This Eyewitness® Guide has been conceived by Dorling Kindersley Limited and Editions Gallimard

Published in the United States by
DK Publishing, Inc., 375 Hudson Street,
New York, New York 10014
04 05 06 07 08 10 9 8 7 6 5 4 3 2 1

Copyright © 2004 Dorling Kindersley Limited

All rights reserved under International and Pan-American Copyright Conventions. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owner.

Published in Great Britain by Dorling Kindersley Limited.

A Cataloging-in-Publication record for this book is available from the Library of Congress.

ISBN 0-7566-0543-1

Color reproduction by Colourscan, Singapore
Printed in China by Toppan Printing Co., (Shenzhen) Ltd

Discover more at
www.dk.com
Contents

6 The camera obscura
8 The birth of photography
10 From negative to positive
12 The Victorian studio
14 Movement and color
16 Photography – the new art
18 Photography for everyone
20 Classic camera designs
24 Anatomy of a 35-mm SLR camera
26 Camera lenses
28 In the darkroom
30 Instant pictures
32 In the studio
34 Freezing the moment
36 The world in close-up
38 Panoramic pictures
40 Photojournalism
42 Extreme photography
44 The view from up there
46 Focus on infinity
48 Underwater photography
50 Photographing wildlife
52 Images of the invisible
54 Spy cameras
56 3-D photography
58 Digital cameras
60 Photography in a digital world
62 Photo trickery
64 Did you know?
66 Timeline
68 Find out more
70 Glossary
72 Index
The camera obscura

Long before the invention of photography, people understood the role of light in recording images. When light enters a darkened room through a pinhole in one of the walls, it projects an upside-down image of the world outside onto the opposite wall. Chinese, Greek, and Arabian astronomers have known this for centuries – Aristotle (384–322 BCE) employed the principle to observe solar eclipses. During the Renaissance, Italian artists fitted lenses and mirrors to the pinhole, and the camera obscura (from the Latin for “room” and “dark”) was born. Thus, the optics of the camera were in place – but it was centuries before chemists were able to solve the problem of how to permanently record the images.

Getting the Right Perspective

The Dutch artist Vermeer (1632–75) is renowned for the uncannily accurate perspective, remarkable detail, and realistic natural lighting of his paintings of interiors. There is strong evidence that he created them with the help of images projected by a camera obscura onto the back wall of the room in which he painted.

A Room with Two Views

This clever contraption, used in Germany in the 1640s, was a portable camera obscura room, shown here with a wall removed. Light entering through pinholes in the outer canvas walls cast images on the transparent paper walls inside. The artist – who climbed inside through a trapdoor in the floor – was able to trace the upside-down images onto the paper.

The Artist’s Friend

Table-top camera obscuras, the forerunners of the first photographic cameras, were used as drawing aids by many artists. The devices incorporated lenses with simple sliding mechanisms to allow focusing. They also contained internal mirrors to flip the image the right way up for tracing onto paper.

Seaside Entertainment

Custom-built camera obscuras, such as this one on Margate pier in England, were popular attractions at 19th-century seaside resorts. The building had a revolving mirror and lens on its roof that projected an image onto a circular viewing table in the middle of the darkened room.

Sketching on the Move

Portable camera obscuras were created for artists to use on the road. Often constructed like wigwams or portable tents, they could be set up anywhere for sketching from life. The artist sat inside and traced over the image projected onto a flat desk. This example was made in Paris in the mid-19th century, and is topped by a rotating brass cylinder containing a glass prism and lens.
SECRETIVE USE OF THE CAMERA OBSCURA
Since the early 16th century, artists had been using the camera obscura to project a 3-D view of the world onto flat surfaces for tracing, thus helping them master the difficulties of perspective and proportion. Leonardo da Vinci described his own experiments with the device in his notebooks. Yet more than 200 years later, the method was still a carefully guarded professional secret. Artists did not want it known that they used mechanical aids. English portrait painter Sir Joshua Reynolds (1723–92) owned a camera obscura that could be folded flat and disguised as a book when not in use.

19TH-CENTURY CAMERA OBSCURA IN OPERATION
The camera obscura at the Observatory Museum in Grahamstown, South Africa was constructed in the late 1880s by Henry Carter Galpin, an immigrant English jeweler with a passion for optics and astronomy. Set at the top of a four-story tower, it has a rotating prism mechanism in its roof that projects a birds-eye view of the town onto a polished-metal table. This the only working camera obscura in the southern hemisphere, but there are are several in the northern hemisphere (see pp. 68–69).
In early-19th-century France, a race was on to discover a way of permanently recording images cast by a camera obscura. Two men led the contest: Joseph Niépce and Louis Daguerre. Niépce was the first to produce a lasting photographic image, but it was Daguerre who invented the process that introduced photography to the masses. In 1839, at the French Academy of Science in Paris, he made a grand public announcement of his daguerreotype process. It triggered an explosion of popular interest. Suddenly everyone wanted to be “daguerreotyped.” New studios opened all over Paris.

The craze for having portraits taken, known as daguerreotypomania, quickly spread through France, across Europe, and to the United States.

The world's first publicly available daguerreotype camera was made by a Parisian named Alphonse Giroux in 1839. It used the sliding-box principle. Light entered through a lens in the front of one box and fell onto a glass screen at the back of a second box. The rear box was slid back and forth until the image was in focus. To take a picture, the glass screen was replaced with a photographic plate, the lens cover was moved aside, and the exposure was made.

Daguerreotypes were fragile objects. A contemporary newspaper described the silvered metal plate with its often-faint impression as “a mirror with memory.” To protect them, the plates were often mounted under glass in ornate frames and cases.

The first photograph was taken by French inventor Joseph Niépce (1765–1833) in 1826 or 1827. It was produced on a light-sensitive sheet of pewter in an adapted camera obscura. The view is from the upstairs window of Niépce’s workroom. The exposure lasted for an incredible eight hours!

Joseph Niépce began his pioneering research into photographic processes rather late in life, at the age of 51. Ten years later, he produced the world’s first permanent photograph. In 1832, at age 67, he went into partnership with Daguerre, but he died just a year later, his work largely unrecognized.
CREATING A PICTURE
Daguerreotype images were made on copper plates coated with silver, carefully cleaned and polished, and treated with iodine and bromine vapors to make them sensitive to light. This process, in which the silver turned to gold-colored silver iodide, was called sensitizing. The unexposed plate was put in the back of the camera, and the exposure made. The plate was then suspended in a special box over mercury vapor to develop the image and make it visible. To stop the silver from continuing to react with light, it was “fixed” with a solution of ordinary salt or hyposulfite of soda.

THE 1840s PHOTOGRAPHER
Daguerreotype equipment was expensive and the process was complex and unreliable. The chemicals could also be dangerous. A photographer in the 1840s was more like a laboratory chemist than an artist.

SHOWMAN AND INVENTOR
Louis Daguerre (1787–1851) was a painter, a stage-set designer, and a showman. His Parisian Diorama, a spectacular theatrical light show, was one of the most popular attractions of its day. His desire to create ever more lifelike panoramas and illusions spurred his search for a way of making a permanent photographic record of the images projected by his camera obscura. In other words, he needed a way of fixing images. Finally, in 1839, after many years’ work, he announced to the world the discovery of the daguerreotype process.

WHERE ARE ALL THE PEOPLE?
This panoramic daguerreotype of the Seine riverbank in Paris was taken in about 1842 by Charles Chevalier, a photographic equipment maker who worked with both Niépce and Daguerre. The exposure times of 15 minutes or more required by the early cameras meant that pedestrians and carriages simply didn’t appear in the picture unless they remained absolutely still.
While Niépce and Daguerre were at work in France, an English inventor named Henry Fox Talbot was also conducting experiments. His research would result in the invention of the photographic negative. Unlike the daguerreotype, which was a one-time image and could not, therefore, be reproduced, Fox Talbot’s calotype negatives could be used to make any number of positive prints. Although revolutionary, his process had drawbacks. Exposure times were long, the method was time-consuming, and the prints were sometimes uneven or faded. A few years later, Frederick Scott Archer’s collodion or wet-plate process replaced it and became the predominant form of photography between the 1850s and 1870s.

Calotype photography

The calotype process, first announced by Fox Talbot in 1841, was the culmination of his long struggle to capture the image projected by the camera obscura. The pictures he recorded were made on paper soaked in light-sensitive silver iodide to produce negative images. From these he developed a process for making positive prints on further sheets of paper.

Fox Talbot's handwritten notes

EARLIEST CAMERA NEGATIVE
Fox Talbot experimented with placing light-sensitive sheets of paper in camera obscuras in his attempts to record the images they captured. One of these images is regarded as the world’s oldest surviving negative. It shows a lattice window, and was taken with one of his own tiny homemade cameras – nicknamed mouse traps by his wife because they were scattered all around the house.

MAKING A POSITIVE PRINT
Fox Talbot’s calotype negatives were made of fine, semi-transparent paper. To make a positive print, he pressed the negative against a sheet of light-sensitive paper and exposed it to sunlight for up to 20 minutes – often in large outdoor printing racks. The print was then fixed with hyposulfite of soda, washed, and dried.
Collodion photography
During the 1840s, all photographs were either daguerreotypes or calotypes – metal plates or flimsy paper negatives. Many attempts had been made to use glass instead, but it proved impossible to get the light-sensitive chemicals to stick to the smooth surface until Archer’s collodion method solved the problem. His so-called wet plates were more sensitive to light than calotypes (so camera exposures could be shorter), and the quality of the image was sharper and more detailed.

THE PORTABLE DARKROOM
Using lightproof tents that folded out of travel boxes or handcarts, photographers – were able to work on location. Taking pictures outdoors, however, was difficult and dangerous. Preparing the plates had to be done swiftly, in complete darkness, and with enough water available to keep them wet. The air beneath the canvas sheet would have been full of toxic fumes.

DOCUMENETING WAR
The Crimean War (1853–56) was the first military conflict ever to be photographed. English photographer Roger Fenton recorded images of the front line before and after battles, and took formally posed shots of groups of soldiers in camp, such as this one in 1855. Lengthy exposure times meant action pictures were impossible.
The Victorian studio

With the invention of the daguerreotype, photography studios, known as parlors, began to spring up everywhere. For the first time, ordinary people could have their likeness taken, and everyone wanted to be photographed. Sitting for a portrait in one of the first studios was hot and uncomfortable. Subjects were often clamped into chairs and asked to sit motionless under glass in full sunlight. The process became less grueling with the development of more light-sensitive photographic plates and the use of magnesium flash and electric lighting, which shortened exposure times. Elaborate props and backgrounds were used, and poses became more natural. Meanwhile, a whole industry was born, mass-producing photographic cards and prints, and manufacturing albums, frames, and cases. It was boom time for almost anyone who wanted to set up as a professional photographer.

Throwing light on a subject

Because bright daylight was needed to make an exposure, early studios were usually built of glass – like greenhouses. In towns, they were often on the roof of the photographer's building. Here is the studio and printing works Fox Talbot established in Reading, England. Here, he was able to set up a studio portrait, take the photograph, and make contact prints from his calotype negative, all in one place.

Ornamental keepsakes

Victorian portraits were often inset into jewelry – brooches, pendants, lockets, and even cufflinks and signet rings. Daguerreotypes and collodion prints swiftly displaced miniature portrait paintings. In fact, many painters of miniatures, seeing their livelihoods disappearing, reinvented themselves as studio photographers.

Scene of prosperity

Having your photograph taken was much like sitting for a portrait painter, although it didn’t take as long, of course, and it was a lot cheaper. People used photographs to impress others with their social standing and so most were looking for a similar result – a dignified, fairly formal pose, with standard props chosen to suggest a wealthy lifestyle. It was no surprise, then, that early photographers tended to imitate artists and create pictures that looked like paintings.

Calling-card camera

This plate camera, made in the 1860s by John Henry Dallmeyer, a German living in London, was an early form of the passport camera. It was designed for taking calling-card or cartes-de-visite portraits. After one shot, the plate was moved to a new position and another exposure was made, until the plate contained four standard-sized 3 x 4 in (7.5 x 10 cm) pictures. Other, similar cameras equipped with four separate lenses were able to take four portraits with one exposure.
FAMILY HEIRLOOMS
Collections of photographs were shown off in family albums, which were handed down from generation to generation. They took both the standard-sized cartes-de-visite and the slightly larger cabinet prints. Pictures of family and friends were mounted alongside portraits of famous people, and album pages were often decorated with images of contemporary scenes. This one, which dates from about 1870, shows the Crimean War.

CELEBRITY PORTRAITS
In the 1860s, collecting photographic prints of well-known people was so popular that the craze was termed ‘cardomania’ by the press. Remember that printed photographs in newspapers and magazines were still unknown. Until the emergence of these cards, paintings and reproductions of engravings were the only images most ordinary people had ever seen.

EXPLODING FLASH
In the 1880s, the first indoor studio lights used magnesium, which burns with an intense white light. Photographers would ignite a small alcohol burner and then blow magnesium powder into the flame at exactly the moment when the photograph was taken. The result was a brilliant flash – unfortunately followed by smoke, smell, and a fine covering of white ash.

STAYING PERFECTLY STILL
In the early days of studio photography, camera exposure times were very long – anywhere between 10 seconds and a minute. Sitters had to remain completely motionless while the shutter was open or their portrait would be blurred. Special clamps were often used to support the head and back and to ensure that there was no twitching or fidgeting. Smiling was frowned on, and blinking was forbidden. This probably explains why many portraits of the time look so tense and unnatural.
DOCTOR’S DISCOVERY
Richard Maddox was an English doctor and amateur photographer. Finding that the ether fumes given off by collodion (see p. 11) affected his health, he set out to invent an alternative. In 1871, he announced the success of experiments in which he coated glass plates with an emulsion of silver bromide in gelatin. Unlike collodion, the plates remained light-sensitive even when dry.

In 1871, a new kind of photographic plate was introduced that transformed photography. The gelatin dry plate was invented by Richard Maddox. It was much easier to use than the existing collodion wet plate, but perhaps more importantly, it was far more sensitive to light. This meant that exposure times were shorter, cameras could be hand-held instead of requiring tripods, and for the first time successful photographs could be taken of moving subjects. Less successful was the ongoing search for a way of producing color pictures. Progress was slow. Successful experiments were taking place with three-color lantern projectors. It was not until 1907, however, when the Lumière brothers produced the first Autochromes, that a process for creating color transparencies became readily available. Unfortunately, color prints were still decades away.

Viewfinder

CANDID CAMERA
The Fallowfield Facile camera of about 1890 was basically a large box with a small hole in the front for the lens. Inside were 12 glass plates that dropped from one compartment to another after each one had been exposed and before the camera needed reloading. The Facile and its like were known as ‘detective’ cameras because they were considered relatively unobtrusive for their time. Carried under the arm disguised in brown paper, they could be used to take the kind of candid shots that would have been impossible before.

Opening for lens

Rush hour in Piccadilly, London

AIM AND SHOOT
By the 1890s, cameras for the amateur were becoming steadily smaller. The first practical hand-held models often had no viewfinders, so photographers took aim by centering their subject in the middle of a ‘V’ shape on the top of the camera before firing the shutter.

Negative photographed with green camera filter

Half-silvered mirror

STREET LIFE
The increased light-sensitivity of dry plates – coupled with improvements in lens design – meant much shorter exposures than in the past. For the first time, pictures could be taken at shutter speeds of fractions of a second rather than several seconds or even minutes. Instead of awkwardly posed portraits and unpopulated landscapes, it was now possible to take much more spontaneous photographs in which people moved naturally, without having to stand still for the camera. The term ‘snapshot’ was born.
PROJECTING COLOR IMAGES
Photographers had long known that any color can be created by mixing red, green, and blue light in the correct proportions. It was the principle behind Maxwell's experiments (see right). In the US, a printer and photographer named Frederic Eugene Ives created a whole range of "Kromskop" cameras, table-top viewers, and projectors that could produce color images using red, green, and blue filters.

THREE-COLOR PROJECTION
This projection apparatus from about 1900 is very similar to the ones used in Ives's triple-color "Kromskop" system. Using a special camera fitted with a system of mirrors or prisms and red, green, and blue filters, three different black-and-white negatives of the same scene were produced. The negatives were then placed in the apparatus and projected using matching colored filters. When the three projected images were superimposed on one another, they produced a full-color picture.

FIRST COLOR PHOTOGRAPH
In 1861, a Scottish professor of physics named James Clerk Maxwell demonstrated what is often claimed to be the first color photograph. It was an image of a plaid bow, produced from three black-and-white negatives that were photographed and projected with red, green, and blue filters. At the time, plates were not sensitive to red light, so it was lucky that the experiment worked at all.

LEADING LIGHTS
The first practical method for creating color transparencies was launched in 1907 by French brothers Auguste and Louis Lumière. They took their inspiration from the Impressionist painter Seurat's "pointilliste" technique of tricking the eye into seeing colors built up from tiny dots of paint. Their Autochrome plates had a coating of minute grains of starch dyed red, green, and blue. The grains acted as filters on top of a positive black-and-white image to produce an optical effect of full color.

COLOR AUTOCHROMES
Autochrome transparencies were very popular until the 1930s. It has been estimated that around 20 million were taken, and leading photographers of the day all tried them out. The subtlety of the color was a revelation, but exposure times were long. Like this shot, the best photographs were taken outdoors in sunshine.
Photography – the new art

When photography emerged in the middle of the 19th century, many painters greeted it with horror, thinking it would rob them of their livelihood. “From today, painting is dead!” responded the artist Paul Delaroche on being shown a daguerreotype for the first time. Some artists dismissed photography in public but in private used it to help them produce more accurate drawings and paintings (as they had always done with the camera obscura). Others welcomed it, even if they were unsure whether it was an art or a science. In the years that followed, photographers explored the artistic possibilities of the new medium, initially making pictures that were much like paintings, but ultimately producing photographs that were an art form in their own right.

IMITATING CLASSICAL ART
Early photographs – especially portraits – were posed and formal, like paintings. Compositions were influenced by Renaissance and Pre-Raphaelite styles, and pictures often had religious or allegorical themes. For these reasons, the style was known as High Art photography. In pictures such as The Passing of Arthur (1890), Julia Margaret Cameron used actors in costume.

BACK TO NATURE
A backlash against High Art came in the form of a new style known as ‘pictorialism’ or ‘naturalistic’ photography, spearheaded in England by P. H. Emerson. He rejected artificial subjects in favor of natural scenes that used composition and light to evoke mood. His pictures were sometimes like paintings, too – but of a different kind. They borrowed from the work of artists such as Jean-Francois Millet, Jean-Baptiste-Camille Corot, and the Impressionists, and used soft-focus effects, textured papers, and hand tinting.

COMPOSITE PICTURES
Henry Peach Robinson was a leading figure in the High Art movement. His famous photograph of The Lady of Shalott (1861) borrows from both Tennyson’s poem and Millais’ painting of Ophelia from Hamlet. Many of his photographs were multiple prints. He would first sketch the picture he wanted to make – just like a painter – then separately photograph the individual components. Finally he would combine the cut-out figures, masks, and backgrounds and make one large contact print.
THE ART OF PHOTOMONTAGE

Like Man Ray, Hungarian photographer László Moholy-Nagy was influenced by modern art movements such as Cubism and Dadaism. In the 1920s, he taught at the Bauhaus school of art and design in Germany, where he encouraged experimentation – the combination of photography with painting and drawing, photograms, solarization, multiple exposures, montage, and darkroom manipulation. This work, *Composition* (1926), is a collage of real objects and painted circles on a background photogram produced using carefully controlled lighting.

EARLY ABSTRACT PHOTOGRAPHS

American artist Man Ray was one of the first to produce abstract photographs. In 1920 he began making photograms – or “Rayographs” as he called them – by arranging objects on a sheet of photographic paper, exposing it to light, and then developing the paper to create a silhouette-like print. Sometimes he “solarized” the picture by briefly turning on the light while it was developing.

A NEW LIGHT ON EVERYDAY LIFE

Early in the 20th century, photographers such as Paul Strand and Edward Weston began to take a new kind of photograph. Pictures such as Strand’s *Ceramic and Fruit* (1916) illustrate how they deliberately chose everyday subjects that would previously have been dismissed as too ordinary to photograph. Strand shot simple still-life arrangements in natural light, avoided any darkroom trickery, and revealed a richness of form, texture, and pattern that becomes almost abstract.

PHOTOGRAPHY INFLUENCES PAINTING

French painter Edgar Degas was an early fan of photography. Many of his paintings of horses and horse races owe much to the photo-sequences of Eadweard Muybridge (see p. 34). Paintings such as this public scene were composed in the style of photographs. People were cropped abruptly, and painted in poses that only a camera would have captured. Perspective was sometimes exaggerated.

The Cotton Exchange (1873) by Edgar Degas
Photography for everyone

The story of popular photography is largely the story of one man, George Eastman, and the company he founded, Kodak. He not only produced the first reliable point-and-shoot cameras, he also devised a system that meant ordinary people no longer had to worry about developing and printing the film. When you finished your roll of film, you simply mailed your camera to Kodak. Back came your pictures, along with the camera reloaded with new film. Eastman’s marketing slogan was “You press the button, we do the rest.” All subsequent innovations in popular photography, from Brownies and Instamatics, through color film, to autofocus and motorized and digital cameras, have concentrated on achieving the same ease of use.

Inside the first Kodak camera
At the front of the Kodak No. 1, introduced in 1888, was a cylindrical shutter inside which was a lens. There was no focusing and no viewfinder. You simply pointed the camera at your subject, pulled a string to set the shutter, and pressed the button to make an exposure. Then you advanced the roll of film in the back of the camera for the next shot. A round screen masked light that came through the lens and fell onto the film, so early Box Brownie photographs were circular. After taking 100 pictures, you sent the camera to Kodak for processing.

Man with a mission
Born in 1854 in New York State, George Eastman left school at 14 to work in insurance and banking. At 24, he bought his first photographic outfit – an expensive and cumbersome “packhorse load” made up of camera, tripod, canvas darkroom, tanks, boxes, and chemicals. He decided to simplify the whole process and “make the camera as convenient as the pencil.” In 1888 he registered the name Kodak and started the company that pioneered cheap and easy-to-use photography.

The camera any child could use
George Eastman’s dream was to create an inexpensive camera so easy to operate that even a child could use it. He achieved this in 1900 with the launch of the Box Brownie. To reinforce the message, the packaging featured pixie-like Brownies created by Canadian illustrator Palmer Cox. The Box Brownie cost $1 in the US.
PHOTOGRAPHY BECOMES A FAVORITE HOBBY
By the end of World War II, cheap cameras were everywhere. They were easy to use, and they took reasonable pictures. Film costs were lower, too. All this made photography accessible to everyone. Many children growing up in the 1950s and '60s joined camera clubs at school, and at home they developed film and made prints in temporary darkrooms set up above the kitchen sink, over the bathtub, or in the garage. Their pictures were mostly black-and-white. Color processing and printing at home was too expensive and too difficult for all but the most dedicated hobbyists.

COLORFUL VACATION MEMORIES
Although Kodacolor and Agfacolor negative film was launched in the early 1940s, it was not until the 1970s that color prints became widespread. Before then almost all family photos were in black-and-white, unless they were slides. Now it is difficult to imagine a time when vacation snapshots were not bright, sunny, and full of color.

ERA OF THE SLIDESHOW
The first commonly used color film produced transparencies, not negatives. It was difficult to make prints from them, so photos were displayed by projecting the slides onto a wall screen, or they were looked at with a special slide viewer – hence the term ‘slideshow.’ Both Kodak’s Kodachrome and its rival Agfacolor (1936) used a film base coated with very thin layers of film emulsion sensitive to red, green, and blue light.

CHANGING FILM FORMATS
Since the 1930s, 35 mm has been the standard film format, but there have been many attempts over the years to introduce easier-to-load alternatives. Instamatic cameras, using cartridge film that could be simply slotted into the back of the camera, were a Kodak invention, with 50 million sold between 1963 and 1970. In 1972, Kodak shrank it to the tinier 110 Pocket Instamatic. In 1983, the Disc camera was launched, but it never caught on with the public and became extinct within four years. In 1996, there followed a new compact film format in a drop-in cassette, Advanced Photo System (APS).

QUICK AND EASY COLOR PRINTS
Digital cameras have made the photo-processing laboratory obsolete. There is no film, so no developing, either. Color prints can easily be made on an inkjet printer linked to a computer. Alternatively, prints can be produced by placing the camera in a special printer dock (as here) and downloading image files direct from the memory card.
The driving force behind camera design at the beginning of the 20th century was the invention of roll film. First introduced in 1889 by pioneer George Eastman, roll film meant that cameras could be much smaller than those that still used bulky photographic plates. But in the years that followed, there was a bewildering variety of film formats. It took some time before the industry standardized on medium-format 120 roll film and small-format 35-mm cassettes. Cameras, too, came in many shapes and sizes – and with increasingly sophisticated features. From a design point of view, the major issue was how the picture was previewed – through a separate viewfinder, through a second viewing lens (twin-lens reflex), or through the picture-taking lens itself (single-lens reflex).

FOLDING ROLL FILM CAMERAS
Compact folding cameras that could be loaded in daylight with roll film cartridges were pioneered by Kodak at the end of the 19th century. They were to prove popular for many years to come. More than 300,000 Kodak No. 3A Autographic cameras were produced between 1914 and 1934. Although described as a pocket camera, at just over 10 in (25 cm) in height, it was rather large.

LARGE-FORMAT PLATE CAMERAS
Today, wood has been replaced by metal and the baseboard by a monorail, but otherwise the large-format plate camera is little changed since the mid-19th century. The bellows design is still useful for architectural, still-life, and studio work. Large sheets of film produce big negatives or transparencies that give very high-quality images. This 1930 Gandolfi camera was used for taking mug shots of offenders in British prisons.

THE FASCINATION WITH PHOTOGRAPHY
The popularity of illustrated magazines in the 1940s and 50s stimulated public interest in photography and provoked a constant thirst for photographs, particularly of celebrities. In 1947, Picture Post, one of the most successful magazines, devoted a front cover not just to an aspiring movie actress but also to the two photographers commissioned to take her picture.
THE AMERICAN PRESS PHOTOGRAPHER’S CAMERA
The Speed Graphic was the camera used by the vast majority of American press photographers over a period of more than half a century. First introduced in 1912, it used 4-x-5-in plates that could be developed in time to meet newspaper deadlines. Later models were fitted with accessories such as large wire-frame viewfinders and flashguns, but the basic design remained unchanged until the 1950s – when this picture of a group of photographers jostling for position was taken.

LEGENDARY ENGINEERING
The Leica was designed between 1911 and 1913 by Oscar Barnack, an employee of the German firm Leitz, which manufactured optical instruments. Barnack wanted a compact camera he could take on mountaineering trips, so he used offcuts of the 35-mm film available from movie studios, which gave smaller negatives than most other cameras of the time. From the start, Leica cameras benefited from the company’s experience of making top-quality lenses.

LAUNCHING THE LEICA
At its launch at the Leipzig Spring Fair in 1925, the Leica was described as a miniature camera. Despite initial doubts, the pictures from its 35-mm negatives proved excellent, and in the 1930s it became the camera of choice for photographers such as Henri Cartier-Bresson.
The arrival of reflex cameras

Reflex cameras use a mirror system to project an image of what the camera sees onto a glass viewing screen so that you can frame and focus the picture exactly as you wish. Single-lens reflex (SLR) cameras allow you to look through the camera lens itself, so that you can see what will be recorded on the film or image sensor. In principle, SLR cameras work in a way similar to the reflex camera obscura (see p. 6). By contrast, twin-lens reflex (TLR) cameras show the view through a secondary lens situated just above the camera lens.

CANDID CAMERA?
A photographer associated with the Rolleiflex is Robert Doisneau. The camera was unobtrusive and quiet – ideal for his spontaneous shots of Parisian street life. Nevertheless, after a notorious court case, he was forced to admit that his most famous picture, ‘The Kiss’ (1950), had been staged.

PROFESSIONAL 35-MM PHOTOGRAPHY
By the 1960s, newspapers and magazines were accepting 35-mm negatives and transparencies for reproduction. Photographers were also adopting the new complete systems of interchangeable lenses and accessories. Nikon equipment, in particular, was compact and rugged enough for the sort of assignment to northwest Canada where Paul Almasy shot this picture of a native Inuit woman.

SINGLE-LENS REFLEX CAMERAS
The first 35-mm SLR camera was the German Kine Exakta in 1936. A hinged mirror inside the camera projected a reversed image onto a glass viewing screen and lifted out of the way of the film when the picture was taken. In 1949, Zeiss’s Contax S introduced a pentaprism and mirror system – still used today – that reversed and flipped the image so that it appeared correctly in the viewfinder. The Nikon F, launched in 1959, was the Japanese firm’s first SLR.

SINGLE-LENS REFLEX CAMERAS

Viewfinder

Pentaprism

Mirror

Glass

Path

Viewfinder system

Camera lens

Ihagee Exakta (1937)

Zeiss Contax S (1949)

Nikon F (1959)

(c) 2011 Dorling Kindersley. All Rights Reserved.
MODERN STUDIO PHOTOGRAPHY
The Hasselblad's 120 roll film transparencies or negatives are more than three times the size of 35-mm ones. This results in higher quality when images are enlarged. Through-the-lens framing is also extremely accurate. These features are especially important for studio work, such as food or advertising photography, when the aim is to capture clarity of detail, such as the droplets of moisture on these rose petals.

ALL THE RAGE IN THE 1960S
In London in the Swinging Sixties, fashion and pop photographers such as Patrick Lichfield (left) and David Bailey became as famous as the celebrities they photographed. The Hasselblad was their trademark camera. It was light, simple to use, and could just as easily be hand-held or tripod mounted. It had interchangeable lenses and interchangeable film backs. And its 2½-in-square (6-x-6-cm) transparencies produced the sort of high-quality results that the glossy magazines demanded.

(c) 2011 Dorling Kindersley. All Rights Reserved.
Anatomy of a 35-mm SLR camera

For many years, the 35-mm single-lens reflex (SLR) has been the most popular camera for serious amateur photographers. It has been widely used by professionals, too, especially on location. In relation to its size, 35-mm film produces good image quality. The SLR design also has many advantages – one is that you can see through the lens itself when you look through the viewfinder, so you can preview exactly how your picture will be framed. Early 35-mm SLRs were mostly manual. You had to set the shutter speed and aperture yourself, and focus the lens. Over the years, many sophisticated features have been added, such as automatic focusing and exposure metering, zoom lenses, built-in flash, motor-drive film mechanisms, and liquid-crystal (LCD) screens for data display.

How a classic 35-mm SLR camera works
Light enters the camera through the lens (see artwork opposite). Initially it is directed up into the viewfinder where the picture can be previewed. When the shutter release is pressed, the shutter opens briefly and a mirror flips quickly out of the way so that light is focused onto the film and an exposure is made. The shutter speed controls the length of time that the film is exposed to light, and the aperture setting alters the diameter of an opening inside the lens, so controlling how much light falls on the film.

(c) 2011 Dorling Kindersley. All Rights Reserved.
DATA DISPLAY

LCD screens show exactly what the camera is doing. When set to aperture priority (A), you choose the aperture and the camera calculates the correct shutter speed. When set to shutter priority (S), you choose the shutter speed, and the camera works out the right aperture.

HOW AUTOFOCUS WORKS

Some of the light entering the lens is diverted away from the viewfinder and onto a sensor similar to those used in digital cameras. The sensor analyzes the image by looking for the area of greatest contrast, on the basis that dark tones with hard edges are more likely to be in focus than gray tones with soft edges. This data is used to adjust the focus of the lens.

Sensors read metal strips on the film cassette to detect which type of film is being used.

ADVANCED AUTOFOCUS CAMERAS

Modern high-quality SLR cameras are packed with electronics. In fact, their automated systems are so sophisticated that they can be used pretty much as point-and-shoot models. However, they also offer manual option (known as override). This means that in certain situations the photographer can choose to take control of focusing, set the lens aperture, or select a shutter speed – instead of leaving it all to the camera's built-in sensors and microprocessors.

Light entering camera

Sensor

Analyzes image

Camera

Point-and-shoot

Modern

High-quality

SLR cameras

Electronics

Automated systems

Point-and-shoot models

Manual option (override)

Focusing

Lens aperture

Shutter speed

Camera built-in sensors and microprocessors.
Camera lenses

A camera lens is actually a series of lenses through which light passes when it enters the camera. The lens acts as the eye of the camera. First, it ensures that as much of what it sees as possible is precisely focused on the film or digital sensor so that the photograph is sharp, not blurred. Second, it controls how much light is let into the camera so the photo is correctly exposed. It does this by means of a variable “aperture,” a hole in the center of the lens that can be opened to admit more light or closed to admit less light. Third, the type of lens determines how much of the scene it sees is recorded. A wide-angle lens sees and records a lot. A telephoto lens sees less, but magnifies what it does see, like a telescope. The lens’s angle of view is known as its “focal length.”

Three times more range
Before zoom lenses were invented, the designer of this Italian Rectaflex Rotor camera of about 1952 came up with an ingenious idea to give photographers more flexibility. Three lenses of differing focal lengths were fitted to a revolving plate at the front of a 35-mm SLR camera so that the photographer could switch from one to another almost instantly.

Varying depth of field
Lenses struggle to get everything in a photograph in focus. When objects close to the camera are sharp, then those far away are likely to be blurred — and vice versa. ‘Depth of field’ is the term used to define how much of the scene will be in sharp focus. This is affected by the lens aperture. A wide aperture gives a shallow depth of field, which means that focusing has to be very specific. With a narrow aperture, most elements in the shot should be in focus.

The wider angle
As its name suggests, a wide-angle lens has a wide angle of view. It takes in two or three times as much as we can see without moving our eyes from side to side. A wide-angle lens was used to take this shot of a team of huskies. The lenses are also often used for taking photos indoors where space is tight, or to create panoramic landscape shots.

In on the action
Sports photographers often use long, or ultra, telephoto lenses. They want their pictures to look as if they have been shot as close to the action as possible, so when we look at them we feel we are right in the thick of the event. They also need fast shutter speeds to freeze movement. The so-called ‘fast’ wide-aperture lenses that satisfy such requirements are large and expensive.
CLOSE CALL
A telephoto lens is like a telescope – it magnifies the image so that objects appear larger. This makes it perfect for photojournalists and sports and wildlife photographers, who cannot get close to their subjects. The large telephoto lens shown here is a "fast" lens. It has a very wide maximum aperture, so it can capture a lot of light, making possible the fast shutter speeds needed for action photography.

CREATING SPECIAL EFFECTS
A filter is an attachment, usually made of glass or plastic, that is placed over a lens to alter the way in which light enters the camera. Filters can change an image in a wide variety of ways. Color filters, for example, are often used in black-and-white photography to darken or lighten gray tones. Polarizing filters reduce reflections and boost the blue of skies. There are also special effects filters – one, called a starburst, turns bright lights into pointed stars.

ANATOMY OF A LENS
A camera lens contains lots of lenses, or lens elements, usually arranged in groups. The groups can be moved back and forth to bring the image in and out of focus and, in zoom lenses, to vary the focal length. This classic lens has two lens groups. The diaphragm blades between them open and close the aperture. Changing aperture and focus is done manually by turning rings on the barrel of the lens. Modern motorized cameras can do this automatically.

EYE OF THE LENS
The hole in a camera lens is called the aperture. It is constructed from a series of overlapping blades that can vary the diameter of the opening. The system of "f numbers" (or "f-stops") indicates the size of the aperture. When wide open, a lot of light enters the camera, so a shorter exposure (shutter speed) is needed. When narrowed, less light enters, so a longer exposure is required. The "speed" of the lens is its maximum aperture – a fast f/1.8 lens lets in four times as much light as a slower f/3.5 lens.

ALL-AROUND VIEW
An extreme wide-angle lens is called a "fisheye" lens. It usually has an angle of view of 180 degrees and produces characteristically curved horizontals and verticals. This shot was taken with a circular fisheye lens from the top of the Great Pyramid of Cheops in Egypt.
In the darkroom

With digital cameras that do not use any film and inkjet printers that can print out photographs in seconds, it’s hardly surprising that the home darkroom is not so commonly used as it once was. However, many photographers still enjoy the greater creativity offered by the conventional process of developing film, putting negatives into an enlarger to magnify the image, exposing the light-sensitive photographic paper, then developing, fixing, and washing the print before hanging it up to dry. It is still the best way to understand how film photography works. Black-and-white processing is illustrated here because, although color developing and printing can also be done in a home darkroom, it is more difficult to achieve successful results.

DEVELOPING FILM
To process a roll of 35-mm film, it must be removed from its cassette, wound onto a spiral, and then inserted into a lightproof developing tank – a tricky procedure in the dark. Once the film is in the tank, however, developing can be done with the light on. Developer, stop bath, and fixing solutions are diluted and kept at the correct working temperature before being added to the developing tank in sequence. Then the film is washed and dried.

USING AN ENLARGER
Before a negative can be turned into a print, it needs to be enlarged and exposed onto light-sensitive photographic paper. The negative is inserted into the enlarger in a special negative carrier. The head of the enlarger is raised to make the image bigger or lowered to make it smaller, and the lens is focused so that the image is sharp. Finally, a sheet of paper is positioned on the baseboard, the red filter is removed, and it is exposed for a calculated length of time.

MAKING A CONTACT SHEET
Photographers often make a single print of all the negatives on a roll of film. This makes it easier to decide which are worth enlarging. The negative strips are laid out on a sheet of paper – with a piece of glass on top to keep them flat – and briefly exposed to light while in contact with the paper – hence the term contact sheet. The sheet and negative strips, stored in protective sleeves, can be kept together for future reference.
Making prints

Photographic paper is coated with a light-sensitive layer of silver halide emulsion — much like film. When exposed under the lens of an enlarger, it reacts to the light passing through the negative and forms a latent image — a positive version of the photographic negative. This image is revealed by soaking the print in a developing solution that makes the picture visible.

1 DEVELOPING THE PRINT
Working in a darkroom lit only by a red safelight, the exposed photographic paper is put into a tray containing the developer, a chemical solution that reacts to the exposed silver halides and turns them into the black metallic silver that forms the image.

2 STOPPING THE PROCESS
When the print has developed to give a good, clear image, it is transferred to a second tray containing the stop bath. This solution, which is usually a weak acid, neutralizes the developer and stops the process.

3 FIXING THE IMAGE
The third tray contains a fixing solution. This turns any unexposed silver halides into soluble salts that can be washed away under running water. Once the paper has been washed, the light can be switched on — the image will be permanent and the paper no longer light-sensitive.

EXAMINING NEGATIVES
Negatives are extremely fragile and scratch easily. They also attract dust and dirt. Any such imperfections are magnified greatly when the image is blown up into a large-format print. For this reason, negatives are stored in transparent sleeves and only handled when necessary. They are examined under a magnifying lens on a lightbox and carefully cleaned before being used to make prints.

(c) 2011 Dorling Kindersley. All Rights Reserved.
Instant pictures

The frustrating wait between taking a photograph and seeing the result is something that has dogged photography from its very early days. Processing film and making prints takes time, so there has always been a demand for some kind of instant process. During the 19th century, there were many ingenious but short-lived systems that incorporated both a camera and a processing unit. But it was Edwin Land, the founder of Polaroid, who in 1948 launched the first camera capable of producing almost instant pictures. The first Polaroid camera used a peel-apart process. In 1972, the new SX-70 Polaroid camera produced one-sheet photos. Instant pictures took off. For the next 20 years, they were everywhere – at parties, at family celebrations, and on vacations. They even featured in work by modern artists.

READY IN A MINUTE
The Model 95 (1948) was Polaroid’s first instant-picture camera. After taking a picture, you pulled a sheet out of the camera, waited a minute while processing took place, then peeled away the top layer to reveal the image. Pictures were black and white at first – color did not arrive until 1963. Peel-apart Polaroids are still used by studio photographers to make sure that they are happy with the lighting and composition (see p. 32).

FULFILLING A WISH
The idea for instant pictures came to Edwin Land (1909–91) in 1944 when his daughter asked why she had to wait to see the photograph he had just taken of her. Four years later, he launched the first Polaroid camera, using a self-portrait to show how the peel-apart process worked.

INSTANT MINI PHOTOS
Although digital cameras are taking over from instant film, they cannot yet produce instant color prints – at least not without being connected to a printer (see p. 19). Convinced that there was still a demand for instant pictures, in 1998 Fuji launched a new instant-photo film called Instax and a year later added a miniature version of it. Instax Mini point-and-shoot cameras fit easily in the palm of the hand and produce credit-card-sized instant pictures.

DOUBLE EXPOSURE
Part of China since 1950, Tibet is a remote, mountainous country. Until recently, many of its people had no experience of technologies taken for granted in the West. These two young Buddhist monks hold up pictures of themselves, shot by a visiting photographer with a Polaroid camera. They were astonished by the pictures – the first photos of themselves they had ever seen.
HOW AN INSTANT PHOTO DEVELOPS
A Polaroid photograph is actually a multi-layered “sandwich” of light-sensitive film emulsions, developing chemicals, and colored dyes. When the exposed print comes out of the camera, it is squeezed through rollers to activate chemicals that stop any further exposure from taking place and start the development process. Colored dyes rise through the layers to the surface of the print to form the final image.

COLOR SNAPS IN A FLASH
In 1972, Polaroid introduced the SX-70, the first camera to produce one-sheet instant prints. There was nothing to peel away. After each picture was taken, the camera automatically ejected stiff white cards. These simply developed by themselves and turned, as if by magic, into full-color photographs. Before and after use, the camera folded flat.

SPEEDY PORTRAITS
Today, many people’s experience of instant prints is the photo booth, used primarily for passport and ID card photographs. Digital technology has transformed these machines from a hit-and-miss experience into a more sophisticated photo-session. Customers can select from a choice of backgrounds before adopting a pose for the camera. As soon as the picture has been taken, they review the image on a color screen before deciding whether to print the photo or pose again for another shot.

POLAROID ART
Artists have always been attracted to Polaroids, especially those who discovered it is possible to manipulate the one-sheet photograph while it is developing and while the emulsions are still fluid. By rubbing or scratching the surface, the emulsions can be moved around beneath the plastic top sheet to create stretched, blurred, or paintlike effects. Far from frowning on such activities, Polaroid has encouraged artists to experiment with the medium.

COLOR SNAPS IN A FLASH
In 1972, Polaroid introduced the SX-70, the first camera to produce one-sheet instant prints. There was nothing to peel away. After each picture was taken, the camera automatically ejected stiff white cards. These simply developed by themselves and turned, as if by magic, into full-color photographs. Before and after use, the camera folded flat.

SPEEDY PORTRAITS
Today, many people’s experience of instant prints is the photo booth, used primarily for passport and ID card photographs. Digital technology has transformed these machines from a hit-and-miss experience into a more sophisticated photo-session. Customers can select from a choice of backgrounds before adopting a pose for the camera. As soon as the picture has been taken, they review the image on a color screen before deciding whether to print the photo or pose again for another shot.

POLAROID ART
Artists have always been attracted to Polaroids, especially those who discovered it is possible to manipulate the one-sheet photograph while it is developing and while the emulsions are still fluid. By rubbing or scratching the surface, the emulsions can be moved around beneath the plastic top sheet to create stretched, blurred, or paintlike effects. Far from frowning on such activities, Polaroid has encouraged artists to experiment with the medium.
In the studio

Working in the studio is all about being in control – whether the subject of the photograph is a fashion supermodel, a dish of beautifully prepared food, or a new car. Outdoors, too many factors are unpredictable – the weather, the light, the background, passers-by, and countless other possible distractions. In a studio, however, the photographer can take charge of the environment. The most important factor is the lighting. Professional photographers work with a range of lights, experimenting with the positioning and the quality of the setup until they achieve the effect they want. Usually, at least two lights are used: a “key” or principal light source, and a second “fill” light to lighten shadows created by the first. A variety of accessories such as diffusers, reflectors, umbrellas, hoods, and filters are then used to give precise control over the strength, quality, and color of the light.

PREPARATION AND LIGHTING

While the photographer checks the lighting with a meter, the makeup artist examines her work under the bright studio lights and corrects any imperfections. Studio flash lights are much more powerful than ordinary lights, enabling the photographer to set the smallest aperture and so work with the largest possible area in focus (see p. 26). However, a bare studio flash is a particularly harsh, direct light source, so accessories such as umbrellas, softboxes, dishes, and snoots are needed to soften or reflect it.

A CHANGE OF SCENE

Using digital imaging software, it is possible to change a background or insert a figure into a new setting (see p. 63). The result will be more convincing if the different images are shot from the same point of view and share the same lighting direction and quality. This is a good match, since both the figure and the room were shot from a similar low angle.

TAKING POLAROID TEST SHOTS

Few medium- and large-format cameras have automatic exposure metering. For this reason, photographers often fit a special Polaroid back and take several test shots to check the exposure and to preview the effect of their lighting setup when the flash is fired. This method is still used, but most people now prefer to see digital previews on a computer screen.
Roll of backdrop paper forms continuous background and foreground

Makeup artist adds final touches

Photographer calculates exposure using a flash meter to measure the amount of light falling on subject when flash units fire

Dome-shaped structure, known as a softbox, fits over flash unit to diffuse the light and soften shadows

Picture can be previewed on screen – and shutter can even be fired from keyboard

Dish reflector controls spread of light from flash unit

35-mm digital SLR camera with image output connected to computer

Heavy-duty studio boom used as alternative to standard tripod

Lenses can be changed for different types of shot, such as close-ups or portraits

(c) 2011 Dorling Kindersley. All Rights Reserved.
Freezing the moment

The world is full of creatures and objects that move too fast and events that happen too quickly for us to see clearly – birds in flight, a pouncing cat, falling raindrops, flashes of lightning, and so on. But photography can freeze time and capture images of these moments. Even a reasonable 35-mm or digital camera will probably have a fastest shutter speed of at least 1/2,000th second, swift enough to reduce blur in most moving subjects. However, most of the pictures shown here require special equipment and techniques. All high-speed photographers face two challenges: the first is to make the exposure very brief; the second is to time the exposure so that it takes place at precisely the right moment. Flash is the answer to the first problem, and an automatic triggering system is the solution to the second.

ILLUMINATING MOVEMENT
Eadweard Muybridge (1830–1904) was an early pioneer of high-speed photography. An Englishman who worked in the United States, he experimented with multi-camera setups and fast shutter speeds to photograph thousands of stop-motion sequences that analyzed how humans and animals move. Here, he is lecturing at the Royal Society in London in 1889.

HOW THE GALLOPING HORSE FLIES
Muybridge's special photo-sequences settled a long-running dispute about what happens to a horse's legs when it gallops. He set up a row of cameras whose shutters were triggered as the horse thundered past and broke lengths of thread stretched across its path. His photographs proved that at a particular moment in its gallop, all four of the horse's legs are off the ground and bunched up under its belly. In 1879 he devised the Zoopraxiscope for projecting a circular disc of his still pictures as a "movie."

MULTIPLE-EXPOSURE PHOTOGRAPHY
Images such as this one of a gymnast are taken using a special stroboscopic flash unit. The camera is set up and prefocused on the point where the action will take place. The room is then darkened and a shutter speed is chosen to ensure that the shutter will remain open for the entire duration. The actual exposures in the sequence are made each time the flash fires. The shorter the duration of the flash, the sharper the frozen image will be.
MOMENT OF IMPACT
This shot of a bullet passing through an apple was taken with an exposure time of 1/3rd microsecond—just 1/3,000,000th of a second. The bullet was traveling at about 1,400 ft (450 m) per second. It was photographed by Harold "Doc" Edgerton (1904–90), a professor at the Massachusetts Institute of Technology who pioneered strobe flash and ultra-high-speed photography. The exposure would have been triggered by an automatic audio sensor that picked up the sound of the gun being fired.

SPLIT-SECOND TIMING
The panther chameleon's tongue darts out to catch its prey in just 1/16th of a second. A hummingbird's wings beat at a speed of up to 80 times every second. To the human eye, both movements register as nothing more than a blur, but a camera's fast shutter speed can capture a photographic image that freezes the motion in time.

TAKE AIM AND FIRE
Inspired by Muybridge's work, in 1881, French physiology professor Etienne Jules Marey (1830–1903) developed a rifle-shaped camera to photograph birds in flight. Loading his gun camera with circular glass photographic plates, he could record 12 shots of a flying bird in a single second. This English version, made in 1885, works in the same way. Marey called his photo-sequences chronophotographs. He later pioneered the use of multiple exposures to record a series of overlapping images of the same subject on a single photographic plate.
Photographing a subject close-up reveals intriguing details we often overlook or are unable to see with the naked eye. It is hardly surprising, then, that the art of taking pictures at larger-than-life size is as old as photography itself. Today, it’s fairly easy to equip cameras with close-up lenses or bellows units to get shots that are life-size or magnified by up to about 20 times. This type of photography is usually called macrophotography. To see closer than that, cameras need to be installed in an optical microscope. Photomicrography, as this is called, magnifies objects by as much as 2,000 times. But to capture images of the world of living cells or proteins we must use a scanning electron microscope, which relies on electron beams instead of light to produce a photolike image.

Blood vessels under a microscope

Microscopic detail

Photographs of the view through a microscope can be taken using a special camera setup. At the top, the camera is attached to a focusing unit that has its own viewfinder. Below it are the binocular eyepieces for viewing the specimen, and a cluster of six lenses giving a choice of magnification. The specimen is mounted on a flat slide, set in place on the specimen table, and lit from below. Sometimes filters are used to polarize or alter the color of the light.

Seeing the parts of a flower

A bellows unit is the best solution for taking macro close-ups, such as of this yellow gerbera flower. It fits between the camera body and the lens and allows the lens to be moved farther away from the film, thus increasing magnification. For the best results, it is used with a tripod to keep it still during long exposures and a ringflash fitted around the lens to give even, shadow-free lighting.

Botanical study

Anna Atkins was a British botanist and photographer who specialized in detailed, close-up images of ferns, grasses, and seaweeds. Her books were among the first to use photographic illustrations. This photogram (see p. 10) from 1853 is a cyanotype. Its Prussian blue tone comes from the chemicals used in making the print.

Flight of the honey bee

A bee laden with pollen is photographed with a macro lens at the moment of take-off. This is the most difficult type of close-up photography. Flash allows a shutter speed fast enough to freeze the bee in motion, but at such a close distance, accurate focusing is critical in order to get a sharp image of the subject.

(c) 2011 Dorling Kindersley. All Rights Reserved.
Scanning electron microscopes (SEMs) are capable of far greater levels of magnification than optical microscopes. Strictly speaking, they do not use light. Instead, they “see” by firing a beam of electrons at an object. The electrons are focused into a very narrow beam, just like a light wave, which is scanned over the surface of a specimen. The specimen’s electrons then create a current, or electrical signal. This signal is amplified and produces a photolike image with an exceptional depth of field on a computer screen.

EXPLORING THE HUMAN BODY
SEM images have revolutionized the way we see and think of our own bodies. They allow us to see beyond the limits of visible light and produce images at magnifications of many thousands of times. Usually, the initial images are in black and white. False color is added digitally to make the images easier to read. In the SEM shown at left, yellow is used for white blood cells, pink for the platelets that trigger blood clotting, and red for the red blood cells.

WORLD’S SMALLEST BOOK
An SEM image of a millipede with the tiniest published book in the world. Made in Germany by typographer Joshua Reichert, it is no larger than the head of a match. This leather-bound, A–Z picture book has just 24 pages, each measuring a mere 0.09 x 0.11 in (2.4 x 2.9 mm).

CLOSE ENCOUNTER WITH A HEAD Louse
The electron microscope can produce images with an astonishing 3-D quality – as this magnification of a head louse climbing a single strand of human hair demonstrates. It would be impossible to capture an image like this with a conventional microscope, which requires specimens to be mounted on glass slides. But there are drawbacks – the subject does have to be dead, fixed chemically, and sealed in a vacuum chamber.
Panoramic pictures

The very earliest panoramic photographs were made by gluing together a series of overlapping images taken by moving, or panning, the camera slightly after each shot. Fox Talbot, the inventor of the calotype process, was one of the pioneers to make pictures in this way during the 1840s. However, he and others soon realized the benefits of a camera that could be rotated during the exposure to produce a single, long negative – initially on a curved glass plate. The specialist panoramic cameras that began to appear were of two kinds: either the whole camera panned around or the camera stayed still and only the lens rotated. Today, digital photography has brought panoramic pictures back into fashion. Software such as Photoshop has made it possible to join, or “stitch,” multiple images together without scissors and glue.

A NEW TWIST
In 1859, Englishman Thomas Sutton invented a panoramic camera that used a unique, spherical, wide-angle lens that was filled with water. Sutton also created specially curved wet-collodion, glass plates for recording the images. These four negatives, each measuring 10 x 5 in (25 x 13 cm), are among the handful that still survive.

TRADING FLOOR IN A SINGLE SHOT
This is a shot of dealers in action at the Chicago Mercantile Exchange. It was taken with a special panoramic camera, a Fuji 617, so called because its negatives or transparencies measure 6 cm (or 2.4 in) high and 17 cm (or 6.8 in) wide. The camera is manual and has a direct viewfinder instead of reflex mirrors. This means that the lens can be positioned closer to the film for a wider angle of view. This can make horizontals at the top and bottom of the picture look curved – typical of many panoramas.

VERTICAL CHALLENGE
There is no reason why a panoramic camera cannot be turned onto its side and used to take vertical shots. In fact, the powerful slanting verticals that this creates tend to emphasize or exaggerate height – ideal for this shot of the John Hancock Building in Boston.
THE WIDER PICTURE

The Russian Horizon swing-lens camera has a lens that rotates while the camera remains still. It uses 35-mm film, but produces a larger-than-normal negative or transparency – 58 mm wide instead of 35 mm. The pictures it takes therefore have a 120-degree angle of view. Exposure is controlled by adjusting the aperture of the lens and the speed at which it swings around.

EARLY PANORamas

This Pantascopic camera was built by two Englishmen, John Johnson and John Harrison, in 1862. It was wound up with a clockwork motor, then allowed to slowly rotate as a string-and-pulley system pulled a wet-collodion plate at the same speed past an exposing slot situated behind the lens. The exposed glass plate measured 7.5 x 12 in (19 x 30 cm) and captured panoramic images that had a 110-degree angle of view. Alfred Hind Robinson took his panoramic photograph of Whitby Bay, Yorkshire, England (above) some 50 years later.

DIGITAL PANORAMAS

“Stitching” describes how digital imaging software can be used to combine separate photos into one panoramic view. It works best with shots that generously overlap one another and keep the horizon on the same level. The software overlays the images and will then do its best to disguise the seams. Some applications will compress or stretch areas of the image to force a fit. Others will try to correct perspective. Here, five separate shots showing visitors at a popular beauty spot have been combined to create one seamless image.
It has been claimed that photojournalism was born in January 1904, when the British *Daily Mirror* became the first newspaper to be illustrated with photographs throughout. Before that date, newspapers had mostly used engravings, which were easier to reproduce than photographs. In the following years, the work of documentary photographers found an outlet in print. In Germany in the 1920s and 1930s, picture editors began publishing collections of related images, and the picture essay emerged. Popular illustrated magazines followed – *Life*, one of the best-known, had a readership of more than 30 million per issue at its height. Today, a photojournalist’s picture can be beamed electronically around the world in seconds. Photos of important events are broadcast on television and viewed on the Internet as they take place – and published in newspapers soon afterward.

Documenting Hardship
Photographer Dorothea Lange documented the Great Depression in the 1930s. Her photographs brought to public attention the suffering of the displaced “Okie” farmers whose homesteads had been destroyed by the dust bowl that spread across the Midwest. Bleak images such as this inspired John Steinbeck’s great novel *The Grapes of Wrath*.

Photojournalism

Getting the Shot
Photojournalists have to balance traveling light with having all the equipment they need. Most will always carry two cameras, one with a fast zoom or telephoto lens and the other with a wide-angle lens. These days, cameras are likely to be digital SLRs.

Photo-Oppportunism
At the Gare Montparnasse in Paris in 1895, this train overran the buffers, plowed across the first-floor station concourse, and then crashed down into the street below. An unknown photographer clearly recognized a picture opportunity when he saw one – posters of his photograph are still sold today, more than 100 years later.

The Rise of the Paparazzi
Diana, Princess of Wales, was perhaps the most photographed woman of all time. Pursued constantly, her life epitomized the cult of the celebrity. Paparazzi photographers, fueled by the willingness of the press to pay for intrusive pictures of famous people, now go to extreme lengths to secure candid, often embarrassing, photographs of the stars. Faster film, digital cameras, and powerful long lenses have helped them in the pursuit of their prey. The term “paparazzi” comes from the character Paparazzo, a photographer in Federico Fellini’s movie *La Dolce Vita*.
Photographs in newspapers began to appear soon after the beginning of the 20th century, quickly taking the place of engravings. The 1940s and 1950s were the glory days of picture magazines such as Life, Look, Picture Post, and Paris Match. They reigned supreme until the arrival of television in the 1960s.

A MOMENT IN HISTORY
All photojournalists are on the lookout for the one shot that perfectly reflects a mood, sums up a moment, or captures an important historic event. In this picture, an American soldier watches as a statue of former Iraqi leader Saddam Hussein is toppled to the ground in central Baghdad in April 2003. The shot takes advantage of some clever framing.

IMAGES FROM A WAR ZONE
The Vietnam War (1964–75) broke new ground in photojournalism. Never before had photographers been allowed such free access to combat zones, and the result was an intensively photographed conflict. Many of the most harrowing pictures – by photographers such as Larry Burrows, Tim Page, and Don McCullin – became symbolic images that fueled the anti-war movement in the United States and elsewhere.

THE NEWS IN PICTURES
Photographs in newspapers began to appear soon after the beginning of the 20th century, quickly taking the place of engravings. The 1940s and 1950s were the glory days of picture magazines such as Life, Look, Picture Post, and Paris Match. They reigned supreme until the arrival of television in the 1960s.

THE FALL OF THE BERLIN WALL
When the wall separating East and West Berlin fell in November 1989, it marked the end of the Cold War and was celebrated by a mass public uprising. Photojournalists from all over the world were on hand to record the event. This shot shows young Berliners sitting triumphantly astride the top of the graffiti-covered wall. It stands in stark contrast to the images of a bleak, empty no-man’s-land fenced with barbed wire that had marked the preceding 28 years.
Looking at a photograph or a video is as close as most people get to climbing a Himalayan peak, trekking to the South Pole, skydiving from an airplane, or peering over the rim of a volcano. Photographers must be our eyes. They bring us images from the world’s hottest, coldest, wettest, highest, and most dangerous places. In the 19th century, the first travel photographers were pioneers, struggling with bulky cameras and makeshift traveling darkrooms. It could take weeks before their pictures went on public view. Today’s outdoor and extreme sports photographers are more likely to be equipped with digital SLRs, a laptop computer, and a satellite telephone. Their pictures can be beamed from one side of the world to another and be up on a web page within moments.

HANGING BY A THREAD
The only way to get close-up shots of climbers in action is to climb with them. For obvious reasons, the cameras used are as small and lightweight as possible. Here, two climbers photograph each other while suspended from an overhang on the mile-high north face of Trango Tower in Pakistan.

POLAR CONDITIONS
In Antarctica during the winter, temperatures rarely rise above -40°F (-40°C). In such conditions, camera electronics may malfunction, batteries may fail, and film becomes brittle. There is even a danger of getting frostbite while changing lenses or looking through the viewfinder. On the positive side, wildlife in this remote region is unused to the presence of humans and therefore less likely to be camera-shy.

Emperor penguin

(c) 2011 Dorling Kindersley. All Rights Reserved.
Volcano erupts, sending up a fountain of lava
Heat-resistant body suit
HEAT OF THE MOMENT
Two of the world’s largest volcanoes, Mauna Loa and Kilauea (left) are on the island of Hawaii. Both are active, and erupt regularly. Volcanologists wanting to take samples of the gas and molten lava must be heat-resistant.

AN EYE ON THE STORM
Photographers who specialize in taking pictures of tornadoes and other severe weather conditions are called ‘storm-chasers.’ They track the development of storms with information from remote weather satellites, and can drive hundreds of miles in a day to be in the right place when the storm reaches its peak. Tornadoes can have wind speeds of up to 300 mph (500 km/h), so it’s safest to photograph one as it moves away.

HEAD FOR HEIGHTS
When skydiving, there is little time for experimenting with camera angles or trying out different compositions. Even a jump from 16,000 ft (4,900 m) – the highest possible without using oxygen – will give only about 75 seconds of free fall before the parachute must be released. Skydivers need to keep both hands free, so mounting cameras onto a fiberglass helmet is the solution for most photographers. One, two, or even three can be attached at the same time – still cameras as well as video camcorders. A special eyepiece can be pulled down to act as a remote viewfinder.

HEAT OF THE MOMENT
Two of the world’s largest volcanoes, Mauna Loa and Kilauea (left) are on the island of Hawaii. Both are active, and erupt regularly. Volcanologists wanting to take samples of the gas and molten lava must be heat-resistant. Of course, photographers looking for close-up shots of the eruptions and lava flows run the same risks and must be similarly protected.
The view from up there

Almost as soon as cameras were invented, photographers seemed eager to get them up in the air to take pictures of the world from above. Hot-air balloons were among the first airborne craft to provide photographers with a lift. But when the Wright Brothers invented powered flight in 1903, aerial photography really took off. It was also about this time that lenses with better optics appeared, so cameras were soon being used in map-making – as they have been ever since. Today, aerial photography covers a wide range of applications. Inexpensive cameras are attached to model airplanes or kites using basic homemade devices, while the sophisticated modern technology of imaging systems is carried by high-altitude spy planes and by satellites orbiting Earth.

UP AND AWAY
In 1853, French caricaturist Felix Nadar took up photography. Just six years later, he opened one of the largest portrait studios in Paris and became a well-known celebrity photographer. In 1858, he combined photography with another of his passions – hot-air ballooning. Undaunted by the problems of having to prepare collodion wet plates in a darkened balloon basket, he became the first person to take photographs from the air.

HOW THE LAND LIES
This vertical aerial shot shows the Leeds and Liverpool Canal near Steeton, England. The time of day is an important factor in aerial photography. In early morning or before dusk, when the sun is low in the sky, it casts long shadows that highlight features in the landscape. Aerial shots taken at these times can therefore sometimes reveal archaeological remains, such as ancient earthworks, that would otherwise be invisible. At midday, when the sun is directly overhead, there are few shadows and finer details can be recorded.

MAPPING THE LANDSCAPE
A high-precision mapping camera is fixed to the floor of the aircraft that carries it and shoots vertically downward. By capturing overlapping images and using a mixture of optical and infrared sensors, it can obtain very accurate data about distances between particular points, terrain height, geology, land use, and even the health of vegetation. This digital mapping camera unit contains eight different camera lenses and image sensors.

EYE IN THE SKY
The US military aircraft Global Hawk is the world’s most sophisticated high-altitude spy plane. Uncrewed and remotely piloted from the ground by computer, it can fly nonstop 24-hour missions and capture detailed radar, infrared, and black-and-white images of an area of about 11,600 sq miles (30,000 sq km). Its digital cameras and other electronic sensing devices are sensitive enough to spot a life raft in the ocean from an altitude of more than 60,000 ft (18,000 m).
1. **AMERICA BY SATELLITE**

Satellites are constantly sending pictures of Earth from space to help scientists monitor the weather. Geostationary satellites are positioned 21,600 miles (36,000 km) above the equator, and take pictures of Earth beneath them. Polar-orbiting satellites, on the other hand, circle the globe capturing images of the areas over which they fly.

2. **SPACE SHUTTLE RADAR**

This high-altitude aerial picture of the New York City area was taken from the Space Shuttle Endeavour's Imaging Radar system (SIR-C). Because radar can penetrate clouds, it's able to capture images in any weather. Pictures are initially black and white. Different radar channels are then allocated certain colors. Water is black; light blue or red areas are dense urban developments.

3. **FROM THE INTERNATIONAL SPACE STATION**

Streets, buildings, parks, piers, and bridges on Manhattan Island are now clearly visible from an altitude of about 240 miles (385 km). This shot was taken with a digital camera and 800-mm lens by the crew aboard the International Space Station Alpha, orbiting the earth at a speed of about 17,500 mph (28,000 km/h).

4. **NEW YORK FROM A HELICOPTER**

This shot of Manhattan Island was taken from a helicopter. It's known as an oblique shot to distinguish it from vertical photographs, which are taken looking straight down at the ground. At this altitude, 35-mm film cameras or digital SLRs are used. But photographing from planes at higher altitudes requires specialist cameras, often equipped with large wire-frame viewfinders, handgrips, and oversized controls so they can be operated while wearing gloves.

KITE CAMERA HARNESS

Cameras attached to kites can be used to take effective low-altitude aerial photographs. This home-made harness held the Yashica compact 35-mm camera that captured this shot of Pigeon Point Lighthouse. The harness includes a radio receiver so that the camera can be rotated and tilted, and its shutter fired, by remote control from the ground.
Focus on infinity

Photography has always played an important part in our understanding of how the universe works. Although telescopes help us to see far beyond the limits of the naked eye, on their own they are still limited. But attach a camera to a telescope, and suddenly we can see so much more. Using sensitive film (or digital sensors) and long exposure times, details are revealed that would otherwise be invisible. Indeed, 19th-century astronomers working with the first astronomical cameras were astonished to discover that outer space was much more crowded than they had thought. Their first photographs of the night sky showed it to be full of hitherto unknown stars, galaxies, and constellations. Space travel was a further breakthrough. Once cameras were taken on board rockets, orbiting satellites, and space probes, they saw the universe clearly for the first time, undistorted by Earth’s atmosphere.

AN ASTRONOMICAL INVENTION
In 1857, the British astronomer Warren De La Rue adapted a collodion camera (see p. 11), attached it to a telescope, and created what he called a “photoheliograph” to take some of the first photographs of the Sun, Moon, and planets. In 1860, he shipped the device to Rivabellosa in northern Spain and erected this makeshift observatory to photograph a total solar eclipse.

TOTAL ECLIPSE OF THE SUN
De La Rue’s photographs of the solar eclipse in 1860 represented a scientific breakthrough. For the first time, there was documentary evidence that solar flares really existed. They had been observed by astronomers many times before, but it had never been proven that they come from the surface of the Sun. Until photography settled the debate, many had argued that they were merely optical illusions caused by the atmosphere.

TOTAL ECLIPSE OF THE SUN

GREAT BALL OF FIRE
Solar flares are huge explosions of superheated plasma or ionized gas that erupt into space from the Sun’s atmosphere. The Solar and Heliospheric Observatory (SOHO) is just one of the orbiting satellites that monitors and photographs the Sun’s activity constantly. This picture was taken with SOHO’s extreme ultraviolet imaging telescope.

THE SKY AT NIGHT
One of the problems with photographing the night sky is that stars and planets do not stand still. They move across the sky as Earth rotates. This has the effect of creating light trails when using the long exposures that may be necessary. To avoid this, scientists attach the telescope to a special mount that has a slow-motion drive that pans the telescope against Earth’s rotation. This freezes the movement of objects in the sky, as if Earth were standing still.
FIRST CAMERAS ON THE MOON
Neil Armstrong’s picture of Buzz Aldrin’s 1969 moonwalk is perhaps the most famous photo of all time. It was shot with one of several specially adapted Hasselblads that the astronauts took with them – all designed to work in zero gravity and at temperatures ranging from over 250°F (120°C) in the sun to −85°F (−65°C) in the shade.

LIGHT FANTASTIC
Pillarlike clouds of dust and gas make up the Eagle Nebula, about 7,000 light-years from Earth. At the tips of the ‘fingers’ of cloud, new stars are being formed. The blue halo effect is caused by ultraviolet light from young, hot stars evaporating unstable hydrogen gases. This enhanced digital image was created from data transmitted by the sensors aboard the Hubble Space Telescope, orbiting 370 miles (600 km) above the surface of Earth.

VIEWS FROM HUBBLE
Launched in 1990, the Hubble Space Telescope was designed to capture images of the universe that Earth’s atmosphere makes it impossible to obtain from the ground. It is loaded with optical, infrared, and ultraviolet sensors. Unfortunately, there was an initial fault with one of the huge 8-ft- (2.4-m-) diameter mirrors that make up the telescope, and in 1993 astronauts were sent up by space shuttle to repair it. Since then, the pictures sent back to Earth have been breathtaking.

(c) 2011 Dorling Kindersley. All Rights Reserved.
Underwater photography

The first underwater photographs are said to have been taken by an Englishman named William Thompson. In 1856, he waterproofed a simple box camera, attached it to a pole, and lowered it beneath the waves off the coast of southern England. During the 10-minute exposure, the camera slowly flooded with seawater, but the picture survived. Underwater photography was born. Near the surface, where the water is clear and there is sufficient light, it is quite possible for an amateur photographer to take great shots with an inexpensive underwater camera. Most fish are naturally inquisitive and will swim quite close to people if they are not frightened away. At greater depths, where it is dark and cold, photography is the principal way of exploring a mysterious deep-sea world, 95 percent of which has never been seen before.

The View from Below
French naturalist Louis Boutan is responsible for the oldest surviving underwater photograph. It was shot in about 1893 using a bulky waterproof camera weighing almost 400 lb (180 kg), which he lowered to the seabed on the Mediterranean coast. His murky exposures lasted as long as 30 minutes each.

The Divers’ Favorite
The first Nikonos camera was made in 1963, after Nikon bought a small underwater-camera company founded by deep-sea explorer Jacques Cousteau. Nikonos cameras were specially built “amphibious” cameras. They have large controls that are easy to operate underwater. The cameras come with interchangeable lenses adapted for underwater work and a system of clip-on flash heads or “strobes.” The Nikonos V, shown here, is the most recent model, launched in 1984.

Up Close and Personal
Great White sharks are among the world’s most ferocious predators, and divers wishing to get close enough to photograph them need the protection of specially toughened steel cages. The sharks are lured to the camera with bait made from tuna heads and a mixture of chicken blood, oil, and fish called “burley.”

Waterproof Cameras
Ordinary land cameras can be used underwater if placed inside watertight covers, or housings. The Nexus housing, shown left, is specially built for a Nikon digital SLR camera, allowing it to be taken down to a depth of 300 ft (100 m). It has large handles and controls, and a special viewfinder that allows it to be used by a mask-wearing diver. Waterproof disposable cameras are inexpensive and can be used while snorkeling or in a pool.
SHOOTING FISH
The key to underwater photography is to get as close to the subject as possible. This is because light behaves differently underwater, and through a camera lens, objects appear larger than they do on the surface. It’s dark underwater, too, so at depths of 100 ft (30 m), flash is essential. Flash heads should be positioned as close to the subject and as far to one side of the camera as possible or they will illuminate all the tiny particles and debris floating in the water, causing a snowstorm effect called “backscatter.”

TURNING BLUE AND BLACK
This wreck being explored by divers in the Maldives is not deep, since colors are still discernible. If it were below about 60 ft (20 m), everything would look blue. This is because certain wavelengths of light are absorbed by water at different depths. Red and orange do not penetrate beyond about 15 ft (5 m). Next, yellows and greens are filtered out. Then only blue remains. Its brightness depends on the strength and position of the sun, and whether the surface of the water is smooth or choppy. Finally, there is no light at all.

TALES FROM THE DEEP
This fanfin anglerfish lives at depths of up to 9,000 ft (3,000 m) underwater. There, the pressure is so great that normal amphibious cameras would implode and diving is out of the question. The only way to capture photographs of such deep-sea marine life is to go down in pressurized submersibles or to send remotely operated robot submarines. Uncrewed vehicles use sonar equipment to detect underwater creatures and trigger the camera or carry CCTV cameras that transmit signals to the surface so that the photographer can preview what the camera sees.

SHOOTING FISH
Lure emits light to attract prey

TALES FROM THE DEEP
This fanfin anglerfish lives at depths of up to 9,000 ft (3,000 m) underwater. There, the pressure is so great that normal amphibious cameras would implode and diving is out of the question. The only way to capture photographs of such deep-sea marine life is to go down in pressurized submersibles or to send remotely operated robot submarines. Uncrewed vehicles use sonar equipment to detect underwater creatures and trigger the camera or carry CCTV cameras that transmit signals to the surface so that the photographer can preview what the camera sees.
Photographing wildlife

Taking successful photographs of animals has more to do with understanding their behavior and knowing how to be in the right place at the right time than with technology and camera gadgets. Using the right equipment is important, however, and devices such as hides, special telephoto lenses, remote-control systems, tripods, and high-speed flash all help photographers achieve the pictures they want. But getting to know the animals – learning where they live, what they eat, and when and where they feed – is critical. Even the most timid and the most aggressive animals tend to be creatures of habit, and there is a pattern to their daily or seasonal activity that will be revealed by patient study and observation. For this reason, many professional wildlife photographers also have a background knowledge of natural history.

EARLY-EVENING REFRESHMENTS
In the Etosha National Park in Namibia, most activity takes place between dawn and 10 a.m., before the day becomes really hot, and between 4 p.m. and dusk, when temperatures begin to fall. This telephoto shot of zebras was taken as the sun was going down, at the time when they usually come to drink at a favorite water hole.

HIDE AND SEEK
Specially camouflaged hides can help conceal a photographer and his or her equipment. What is important is to set up the hide in advance of the shoot, and then to be patient on the day. Birds and animals will know that the hide is there, but they need to get used to it and to understand that it is not a threat.

CLOSING IN ON A SUBJECT
Tripods are essential for close-up work because they prevent the shaking that can occur if a camera is hand-held for a long exposure. A tripod with a swivel arm that lowers the camera to the ground is very useful for photographing flowers and insects that feed on them.

SO NEAR – AND YET SO FAR
The natural habitat of the polar bear is the Arctic, where the only practical mode of transportation may be a snowmobile. Temperatures can drop to –67°F (–55°C), at which point camera batteries can fail and zoom lenses may freeze solid. The bears can be dangerous, too, so a long telephoto lens allows the photographer to shoot from a safe distance.
WILDLIFE LOCATION SHOOT
The photographer wanted a shot of this hawk with its wings fully outstretched, about to launch itself into the air. The bird’s handler felt the hawk would be more at ease if the shoot took place outdoors, which also meant there was no need to worry about studio lighting. The photographer decided not to use a tripod because he wanted to be able to move quickly – in any case, the fast shutter speed required to freeze the movement of the bird’s wings ruled out the risk of any camera shake.

NOCTURNAL EXPOSURE
Food left as bait lured this fox into an upturned garbage can where a camera had been hidden. With the fox in position, the photographer took the shot from a distance using an electronic cable release – attached to the camera earlier – to fire the shutter. For longer distances, remote-control devices using infrared beams or wireless transmitters can be used. When the photographer is not present, a movement-sensor system can be set up so that the animal itself triggers the shutter.

IMPROVING LENS STABILITY
It is not always practical to use a tripod to steady a camera. This is why some modern lenses have built-in image-stabilization (IS) systems to minimize camera shake. Sensors in the lens detect wobbles and instruct internal mechanisms to compensate for the movement.

Fast shutter speed means wings can be photographed without motion blur

Shots taken at five frames per second

Motor-driven sequence of exposures

Electronic cable release

Professional handler directs bird’s movement

Portable reflector bounces light onto underside of bird’s wings

Lightweight 35-mm SLR allows freedom of movement

Canon

400-mm IS lens

Travel cases for carrying extra equipment

(c) 2011 Dorling Kindersley. All Rights Reserved.
Images of the invisible

Light, which is essential to photography, is a form of energy that travels in waves. Within a limited range, our eyes are able to distinguish different wavelengths, which we see as the colors of the rainbow, from red at one extreme through to violet at the other. This is how we view the world. But there are many other wavelengths of light which, although invisible to the human eye, can be "seen" and photographed by special cameras and image sensors. Infrared, ultraviolet, and X-rays are among the best known. Some of the imaging techniques shown here don’t use light at all. A magnetic resonance imaging (MRI) scanner, for example, uses a combination of magnetism and radio waves to pick up signals from the human body that it sends to a computer to make into the kind of enhanced image we can recognize.

ILLUMINATING X-RAYS
Because X-rays have a shorter wavelength and more energy than visible light, they can pass through soft materials (such as fabrics and body tissue). However, they cannot penetrate solid objects such as metal and bone. Photographs made by exposing photographic film to X-rays are called radiographs. This colored radiograph of an alarm clock shows inner metal parts that would otherwise be invisible.

INFRARED VISION
Special infrared film and sensors are responsive to invisible infrared light. In this aerial photograph, trees and bushes appear red or pink. Such false-color images can reveal details that would not normally be seen. In fact, color infrared film was originally made to detect hidden military bases, because it would show up the difference between living foliage and dead branches cut for camouflage. It is also used by forensic scientists to spot forgeries in documents and paintings.

VEIN BEHAVIOR
An arteriogram (or angiogram) is a type of X-ray designed for taking photographs of veins and arteries. To "see" the veins, an opaque, colored dye is injected into the bloodstream. X-rays cannot pass through this dye, so once it has circulated, the X-ray image is taken. Here, the pulmonary arteries and veins in the lungs are shown in orange. The rib cage can be seen in blue.

GETTING INSIDE SOMEONE’S HEAD
Magnetic resonance imaging (MRI) uses magnets and radio waves to produce very detailed images. Inside an MRI scanner, exposure to a strong magnetic field aligns the hydrogen atoms in the body. Short pulses of radio waves then knock the atoms briefly out of alignment. A second magnet then detects the signals transmitted as the atoms realign once more. The data is sent from the scanner to a computer that processes it and turns it into a picture on a monitor screen. MRI scans are used for identifying abnormalities such as tumors, for examining the spine, and for diagnosing sports injuries.
HOW BEES SEE NECTAR
Under ultraviolet (UV) light, the petals of a potentilla flower turn from yellow to blue and dark patches appear. These patches are “nectar guides” and are used by bees, whose eyes are sensitive to UV light. This type of light lies beyond the violet end of the spectrum (hence the name) and is invisible to the human eye. However, it can be seen by certain animals and is recorded on photographic film. It is often used for security marking or for detecting forgeries.

LIGHTING UP THE DARKNESS
Photographs such as this night shot of a ground crew on a US Navy carrier can be taken using special image intensifiers. These absorb the tiny amounts of light, including infrared, that are present and amplify them so that we can see the image. The amplification can be as much as 250,000 times the original light source. Image intensifiers have phosphor screens that cause images to appear green.

THERMAL IMAGING
The heat given off by an object is transmitted in the form of “thermal” infrared light. The wavelength of this light is too long for us to see, but it can be picked up by cameras with special sensors that respond to thermal radiation. The process is called thermography and produces color images that can be viewed on a computer screen. In this image, the warmest areas appear red, and the coldest appear blue. Thermography is widely used in medical diagnosis (where it can help doctors detect cancers or circulatory disorders), as well as in secret surveillance and search-and-rescue operations.

BUBBLE CHAMBER
The bubble chamber was invented to study the behavior of subatomic particles. It contains liquid hydrogen under high pressure kept just below its boiling point. When particles pass through the hydrogen, they cause it to boil, leaving trails of tiny bubbles that can be photographed.

BUBBLING WITH LIFE
Atoms are made up of subatomic particles – electrons, protons, neutrons, neutrinos, muons, pions, and many more types. Subatomic particles are simply too small to see. But in a bubble chamber (below), the fast-moving particles create trails of bubbles in their wake. These are photographed through glass portholes, often with more than one camera. The black-and-white images are later artificially colored.
Spy cameras

One of the spy’s main tasks is to obtain secret information, copy it, and pass it back to his or her controller. Before the days of copier machines, scanners, and electronic documents, a camera was the surest way to copy secret papers. Consequently, for much of the 20th century, the scientists of the world’s top intelligence agencies vied with one another to invent ever more ingenious ways of miniaturizing and disguising cameras. Lenses were built into umbrellas, briefcases, and cigarette packs, and they were concealed in watches, books, pens, and radios. One manufacturer – Minox – is famous for making the sub-miniature cameras used by almost every spy who operated in the last 60 years.

DO YOU HAVE THE TIME?
The Steineck ABC camera was made in Germany in 1949 by an inventor named Dr. Steiner. Disguised as a wristwatch, it could take six pictures on a special film disc – which spies found irritatingly difficult to load. Now, of course, miniaturized digital technology has replaced bulky film mechanisms, so spy cameras are even easier to disguise.

UMBRELLA ATTACHMENT
This umbrella concealed a tiny spy camera known as the F21. It was adapted by the Russian KGB in 1948 from a German Robot camera. Built into the wooden handle, the camera fitted snugly inside the umbrella’s outer casing. A small hole allowed the lens to peep through. Although it had no viewfinder, it could fire off several shots in quick succession.

MATCHBOX CAMERAS
During World War II, the US secret service commissioned Kodak to create a series of miniature 16-mm cameras that could be concealed inside matchboxes. They were disguised with labels from the country where they were to be used.

BETWEEN THE LINES
The Swiss-made Tessina camera was small enough to be concealed in a pack of cigarettes or between the covers of a book. It was the world’s smallest motor-driven 35-mm camera and could take a series of 10 pictures before it needed rewinding. The camera lens looked out through a hole in the front edge of the book.

YOU’VE BEEN FRAMED
This fake sunglasses case was designed by the East German Stasi (secret police) to conceal a tiny KGB Tnychka camera. The lens looked through a mesh of small holes in the case and the camera was fired by pressing a lever on one side. A cut-in-half pair of sunglasses completed the illusion – convincing enough provided the sun did not shine.
GUIDE FOR LENS TUBE

Binocular viewfinder

Interior of clock

Lens tube

Focus adjustment

Body of camera

Control cable

PEEKING THROUGH WALLS

Intelligence agencies were very clever at creating devices for photographing what was taking place in a hotel room from the secrecy of the one next door. In the 1980s, the East German Stasi produced this special surveillance camera with a long lens tube that could be inserted into a ready-made hole in the dividing wall. A cuckoo clock concealed the lens.

A KGB FAVORITE

The Ajax-8 was one of the KGB’s standard-issue spy cameras from the 1950s to the 1980s. It was concealed in the hand or worn so that the lens peeped through a false button or brooch. Although it had a focus scale that could be preset, it had no viewfinder, so spies had to point, shoot, and hope for the best. The camera was fired by pressing a thumb lever that also advanced the film.

THE ULTIMATE SPYING AID

First made in 1938 in Riga, Latvia, the Minox is the Rolls Royce of spy cameras. It is tiny – less than half the size of a pack of playing cards – and uses 8-x-11-mm-format film loaded in special cassettes. Although each of the 50 negatives is no larger than a little fingernail, the lens is so good that pictures are detailed and sharp – perfect for photographing secret documents, maps, and blueprints. Minox cameras are still made today.

GATHERING DOCUMENTARY EVIDENCE

Obtaining sharply focused pictures is crucial when photographing secret documents. The first Minox cameras had fixed-focus lenses. Only after 1952 were they capable of being focused manually. Even then, there was no rangefinder. To help spies gauge distances, the camera came with a metal chain that could be used like a tape measure to check the distance between document and lens. Later models also had a bolt-on flash.

HIDDEN MICRO CAMERAS

A cigarette lighter, key fob, and pen each conceal a miniature camera. They were issued by the CIA to its spies and double-agents. Embarrassingly, Boris Yuzhin, a KGB officer who secretly worked as a mole for the US intelligence agency, misplaced his lighter while in the Soviet Consulate in San Francisco in 1981. When it was found, the camera was discovered.

PRETENDING TO BE 007

These days, we can all play at being spies. Camera phones (see p. 61) and mini digital cameras, like this Sony Qualia 016, are silent and inconspicuous. The Qualia has a highly sophisticated imaging sensor, a tiny color LCD screen, and is about the same size as a cigarette lighter. Sony markets it in a James Bond–style black leather attaché case.
3-D photography

We are able to see three dimensions (3-D) because each of our eyes views an object from a slightly different angle and produces a combined image with depth. Photographers have long been fascinated by ways of making this work with their images. Henry Fox Talbot experimented with 3-D photography in the 1840s, and by the 1850s there was a public craze for “stereo” images. In the Victorian home, a special viewer for stereo pictures was almost as common as a television set is today. Nowadays, most people’s experience of 3-D photography involves 3-D pictures designed to be viewed with special glasses, or holograms. Holograms are created using lasers, which emit light waves of the same frequency that remain in phase with one another.

3-D PRIZEWINNER

The inventor of 3-D holography, Dr. Denis Gabor, came up with the idea in 1948. Remarkably, it was 14 more years before two Americans were able to employ newly discovered laser light to see whether or not his theory would actually work. Fortunately, it did – and Gabor was awarded the Nobel prize. He is immortalized here in a transmission hologram.

Laser

TRANSmission HOLOGRAM

All holograms are made using laser light. The laser beam is split in two so that one, the reference beam, is directed toward a holographic plate or piece of film. The other beam is reflected off the object, here a dinosaur, carrying with it information about the object’s size, shape, and texture. The two beams then meet at the holographic plate, producing an interference pattern that records the 3-D information. The equipment must remain absolutely still – any vibration will disrupt the light waves and stop the image from being recorded.

VICTORIAN STEREOSCOPE

A pair of pictures was taken on a single plate using a special camera fitted with two lenses set side-by-side about as far apart as the human eyes. Once processed, the plate was put in a stereoscope viewer. The left eye viewed the left-hand picture, and the right eye the right-hand image. The very slight differences created an optical illusion that made the scene appear three-dimensional.

(c) 2011 Dorling Kindersley. All Rights Reserved.
SEEING THE WHOLE PICTURE
A stereo image can be created by duplicating a photograph and displaying one version in red slightly offset against a second version displayed in blue. When viewed through glasses with one red lens and one blue lens, the image appears in 3-D. This works on paper as well as on computer screens, as shown here. A similar technique is used to create hidden-picture stereograms.

DOUBLE TROUBLE
When two 3-D images are recorded on the same holographic plate, or piece of film, the result is a double-channel transmission hologram. Here, a second 3-D image of the dinosaur’s skeleton has been superimposed over the original 3-D image of the creature in all its fleshy glory. Each image is then assigned a different viewing angle. This means that the creature can be seen stripped down to its bare bones when viewed from the left (as here) and in the flesh when viewed from the right.

REFLECTION HOLOGRAM
A reflection hologram is made by shining a reference beam and an object beam onto a thick film from opposite sides. The beams interfere to produce a pattern of light and dark on the film. When the hologram is viewed, this pattern reflects light in a way that produces a 3-D image of the original object.

COUNTERFEIT CRIME BUSTERS
In 1983, MasterCard was the first credit card company to print holograms on its cards to combat fraud. In 1984, National Geographic was the first major magazine to print a hologram on its front cover – it showed an American eagle. Today, holograms are all around us – often as a way of preventing counterfeiting, as on this “edge-to-edge” hologram CD, in which holographic images are part of the actual disc.

MASS-PRODUCED HOLOGRAMS
When the euro was introduced in 2002, 16 billion banknotes were issued, each featuring an embossed hologram. These are transmission holograms with a mirror backing and are the type most easily mass-produced at low cost. The areas of light and dark from the holographic plate are converted to a pattern of minute grooves embossed into sheets of thin foil, as shown here. Checking quality of embossed holographic foil.
Digital cameras

It is hard to believe that digital cameras have been available to consumers only since about 1996. Now, they outsell film cameras and, in time, seem likely to replace them. Their obvious advantage is that, because they do not use film, no processing is required. Pictures can be viewed immediately, either on the camera’s own LCD screen or, after downloading to a computer, on a color monitor. They can be printed very quickly, too, either on a regular computer printer or by a professional photo laboratory. Instead of film, digital cameras have a light-sensitive imaging chip, or sensor, made up of millions of miniature picture elements called “pixels.” This sensor has many advantages over film. Its sensitivity to light (or ISO rating) can even be altered from one picture to another – which until now could only be done by loading film of a different speed.

MEMORY CARDS
Each time a picture is taken, it is recorded on the camera’s light-sensitive sensor. The camera’s electronics translate the information it has acquired into the form of digital data, then transfers (or “writes”) it to storage devices called memory cards. Decreasing in size almost as fast as they are increasing in capacity, these cards store the photographs until they can be downloaded from the camera to a computer or printer.

INSIDE A DIGITAL SLR CAMERA
Digital and film cameras work in very much the same way. They both have a variable-aperture lens that admits and focuses light, and they have a shutter that opens when the picture is taken. The major difference is that, in a digital camera, the light falls onto the surface of a light-sensitive sensor rather than onto unexposed film. In many digital cameras, the sensor is capable of capturing separate images or frames in such quick succession that it is possible to record short movie sequences. The cameras have built-in microphones, too, so the movies have sound.
PUTTING YOU IN THE PICTURE
This camera has both an electronic viewfinder (EVF) and a liquid crystal display (LCD). The EVF is a tiny, high-resolution color screen instead of the optical viewfinder found on most cameras. It is a through-the-lens design, so it can be used to preview exactly what will be recorded on the image sensor. The EVF and LCD screens can display images and the menu options for the camera controls.

HOW A PICTURE IS RECORDED
A digital image sensor is like a checkerboard or grid of tiny squares. Each square is a silicon photo diode that can record the brightness of the light falling on it when a picture is taken. But it can only ‘see’ in tones of gray. In order to record color images, the diodes are alternately filtered so that some record red light, others green, and others blue. When the image is displayed, the combination of red, green, and blue in varying intensities recreates the colors of the original scene.

DRIVEN BY A CHIP
The light-sensitive sensor at the heart of every digital camera is likely to be a CCD (charge-coupled device) or a CMOS (complementary metal-oxide semiconductor). Both record an image that is then translated into digital data. The resolution of the chip is measured in megapixels – so this 8-megapixel camera, for example, has a chip that can capture images measuring 8 million pixels.

PIXELS AND FILM GRAIN
All digital images are made up of thousands of tiny blocks or pixels of color. Normally, the images are displayed at a size at which the human eye cannot detect them individually. But the image can be enlarged so that they become visible and the picture appears “pixelated.” The higher the resolution of the image, the more it can be magnified before it breaks up. Film is similar – it is made up of tiny grains of silver halide and color dye that become visible when enlarged.
Photography in a digital world

Today, photography has one foot firmly in the digital world, with the other likely to follow before long. After more than a century of depending on light-sensitive film, an increasing number of photographers are moving toward a digital future. There are many advantages. Digital cameras are easy to use, and produce photographs that can be viewed immediately. Digital photo files can be stored and used in many different ways – they can be downloaded onto a computer and used by software programs, sent to friends or family via email or phone, and posted on the Internet, for example. Moreover, images can be copied, corrected, resized, recolored, and manipulated in countless ways without loss of quality.

STORING PHOTOS
Digital-photo image files are stored on a memory card in the camera. When the card is full, pictures can be downloaded onto a computer. Large image files quickly fill a computer’s hard disc, however, which is why they are usually transferred onto CD or DVD for storage.

USING A FILM SCANNER
A film scanner is used for turning negatives or transparencies into a form that a computer can understand. This is called ‘digitizing.’ The scanner shines light through a negative or transparency onto a digital image sensor similar to the ones in digital cameras. The sensor records the differences in brightness as electrical charges, then converts them to digital image data.

DOWNLOADING IMAGES
There are two ways of downloading images from the camera’s memory card to the computer. The camera can be directly connected to the computer using a cable (as shown here), or the card can be removed from the camera and inserted into a memory-card reader that has been connected to the computer.

MAKING THE MOST OF SOFTWARE
Once images have been downloaded from the camera to the computer, software applications are used to display, sort, file, edit, and manipulate them. At their simplest, the programs will let you crop and resize pictures, organize them into albums, and make slideshows with them. But sophisticated packages like Adobe Photoshop give you access to the same tricks and special effects as the professionals (see p. 62).
Flatbed scanners are much like photocopiers. They can scan or digitize almost any image, from photographic prints, documents, and drawings to pages from books and magazines. Equipped with a transparency adapter, they will scan negatives and slides, too. You can even scan real objects—as long as they are small enough to fit on the bed of the scanner. It's a great way to convert items other than photos, such as flowers, toys, or coins, into digital files. Once digitized, they can be included in digital photo albums, digital scrapbooks, or school projects.

Most digital photos are printed out at home on inkjet printers. When used with high-quality paper, they can produce very good results, especially if they have four, six, or more separate ink cartridges for different colors. For professional laboratory quality prints, you should choose a printer that uses ink ribbon rather than cartridges (like the one shown here). Many printers now print direct from memory cards—there is no need to download them to a computer first.

Personal digital assistants (PDAs) are multipurpose handheld computers. They often act as cell phones, too, and can connect wirelessly to the Internet. It's no surprise that, like phones, they have digital cameras built in and can send photos to other phones or via email.

This palm-sized device is a portable multimedia player. It is essentially a computer hard drive with a small color screen. It can be used to download photos from memory cards, either for interim storage or to view them at a larger size than on the camera. When set to slideshow mode, it's ideal as a constantly changing “picture-frame” and for showing off photos to friends.

It's common now for a new cell phone to have a built-in digital camera. The quality of the pictures is still inferior to that of most digital cameras, but that's not the point. What makes camera phones such fun is that pictures can be sent to friends and family, from one phone to another, just an instant after they have been taken.
Photo trickery

Can the camera lie? Strictly speaking, no. It’s a device that simply records an image of what’s in front of it. However, in practice the answer is not so clear-cut. Photographers have always been able to influence a picture by controlling what the camera sees and what it doesn’t – choosing a particular viewpoint, cropping out of the frame anything they do not want to appear, carefully selecting focus, exposure, and lighting. The tradition of manipulating pictures once they have been taken is known as “photo retouching” and it has long been an acknowledged skill. Nowadays, digital imaging has made the whole process easier. Anyone with a computer and suitable image-editing software can give it a try.

That’s the spirit

In the Victorian era, spirit photography became popular. The best-known spirit photographer was Frederick Hudson, who created this composite print showing the ghostly, underexposed image of a couple’s deceased daughter. Many people at the time were convinced that such images were real.

Fairy story

In 1917, two young girls, Frances Griffiths and Elsie Wright, produced photographs of themselves playing with fairies in their garden in Cottingley, Yorkshire. Experts declared the pictures genuine. More than 60 years later, in 1981, the pair finally admitted to the hoax and revealed that the paper fairies had been cut out of a book and pinned in place for the camera.

Blurring reality

On the computer, two photos can be combined by making them into separate ‘layers,’ then placing one on top of the other. The transparency of the top layer can be adjusted so that areas of the picture on the bottom layer can be seen through it. With some additional retouching, this is how this photographer blended a picture of his boots with the photo of his feet.

Retouching history

In politics, those who have fallen from favor are often erased from official photographs, on the basis that if they no longer appear in the pictures, then history will forget them. Joseph Stalin had hundreds of photographs retouched to remove any traces of his enemies. This photograph was taken in 1919. Originally, it showed Vladimir Lenin (in the center) and Leon Trotsky (siding) together at the second anniversary of the Russian Revolution. In a doctored version published in 1967, Trotsky has been airbrushed out.
NOT CHILD’S PLAY
This photograph is the joint effort of a professional photographer and a digital retoucher. It was commissioned by a French clothing company to show off its range of children’s clothes in a single giant image. The photographer realized it would be impossible to get every child in the right pose at the right moment for a single camera exposure, so he shot 100 pictures of groups of them. The retoucher then placed each group digitally onto the background of the empty church square – all at very high resolution so that smaller areas could later be enlarged. The final digital image was composed of hundreds of different layers and took six days and nights to produce.

THEY CAME FROM SPACE
It has been estimated that there are more than 10,000 photographs claiming to be of unidentified flying objects (UFOs). Debate rages over whether they are genuine. The best fakes – whether products of traditional pen, ink, and airbrush or modern-day digital image-editing software – are skillfully done. They carefully match camera viewpoints, angles of view, and lighting quality and direction. Others, as here, are more openly created for fun.

MONSTERS AHoy!
Scotland’s Loch Ness is the largest freshwater lake in Great Britain and is up to 750 ft (250 m) deep. It has long been rumored to be the home of “Nessie,” a large, prehistoric creature. An early photograph of the monster was revealed to be a fake when one of the hoaxes made a deathbed confession at the age of 93. This picture was shot in 1977 by Anthony “Doc” Shields, who claims that it is genuine.

Empty church square forms background

Final image after digital retouching

MONSTERS AHOY!
The Loch Ness Monster?

Faked image using studio model of UFO

Photo of feet in same position forms second layer

Photo of feet in same position forms second layer

Top layer is made transparent so feet can be seen beneath boots

Top layer is made transparent so feet can be seen beneath boots

One of 100 individual shots of groups of children

(c) 2011 Dorling Kindersley. All Rights Reserved.
Did you know?

The giant digital mosaic, **You Can**, wrapped around London’s IMAX movie theater in 2002. It measured 6,000 sq ft (2,000 sq m).

The best place to store film is the refrigerator. The dyes stay colorfast for longer if film is kept in the dark at a low temperature.

Some 550 million households around the world own at least one film camera. And in the U.S., there is roughly one camera for every adult living in the country.

The very first Kodak camera, launched in 1888, contained a 20-ft (6-m) roll of light-sensitive paper – enough to produce 100 small circular pictures. But in 1914, the Tourist Multiple, patented by New Yorker Paul Dietz, outdid this. It held a 50-ft (15-m) roll of film – enough for more than 750 photos, or ‘a complete European tour,’ as its ads claimed.

Photography’s popular 35-mm film format originally came from the film used in early movie cameras. Thomas Edison cut a roll of 70-mm Kodak film down the middle, producing two 35-mm-wide strips. He put perforated holes down the edges so they could be run through movie cameras and projectors. In 1924, Oscar Barnack also used 35-mm movie film for his prototype of what would become the Leica, the world’s first commercially successful 35-mm camera.

The Hubble Space Telescope uses digital cameras to take its astonishing photographs of deep space. Its postage stamp–sized imaging sensors are so sensitive to the faint light of distant galaxies that they can see objects a billion times fainter than the naked eye can see.

In December 2000, a Japanese photographer named Shinichi Yamamoto set the Guinness World Record for the longest photographic negative. It is 100 ft (30 m) long and 2.75 in (7 cm) wide. It shows a group of about 650 high-school students arranged in a circle around a homemade revolving panoramic camera. The camera rotated 13 times, capturing the students in 13 different poses on the same piece of film. The print from the negative is 476 ft (145 m) long.

What’s in a name?

KODAK
George Eastman simply invented the word ‘Kodak.’ Although it doesn’t mean anything, Eastman thought it was easy to remember and easy to pronounce in any language.

CANON
Canon cameras were originally called ‘Kwanons,’ after the Buddhist god of mercy, but the company switched to ‘Canon’ to avoid upsetting religious groups.

FUJI
The company simply took its name from Japan’s legendary Mount Fuji.

LEICA
The company started as Leitz in 1849, when it made lenses for microscopes and telescopes. When it switched to making cameras it created the new name Leica from LEItz CAmera.
QUESTIONS AND ANSWERS

Q Who invented photography?

A No single person can really be described as the inventor of photography. Instead, three men all working at about the same time can be said to have contributed to its discovery. They were Frenchmen Joseph Niépce and Louis Daguerre (see pp. 8–9), and Englishman William Henry Fox Talbot (see p. 10). They each devised a practical process for capturing a permanent photographic image. Credit should also go to George Eastman, the founder of Kodak, for bringing cameras and film to everyone.

Q Where did the term ‘photography’ come from?

A It was first used in 1839 by John Herschel, a friend of Talbot. The word comes from the Greek words phōtos (light) and graphos (writing). Herschel also coined the terms ‘positive’ and ‘negative.’

Q Why are there so few early color photographs?

A Color photography was a much tougher problem to solve than black-and-white. In fact, the first photographic plates – even though they were designed for monochrome – could see only blue light. It was not until 1906 that panchromatic films were able to record red, green, and blue. Many of the earliest color photographs were in fact monochrome prints that were hand-tinted or painted. Color film is complex and is made up of multiple layers of emulsions, filters, and dyes. Color transparencies didn’t arrive until 1936 and color negatives until 1950.

Q What type of camera was used to take the latest pictures of Mars?

A NASA’s Mars Exploration Rover Spirit carries nine cameras altogether. Its Panoramic Camera, or ‘Pancam,’ takes photographs like the one shown here. It is a digital camera, of course, but somewhat surprisingly, it’s only a one-megapixel model, which compares unfavorably with even the most inexpensive consumer cameras today. The difference is that its image sensor is much bigger, so each of the one million pixels it contains is about four times larger and more sensitive than normal.

Q How did early photographers get the correct exposure?

A Initially, the length of time an exposure was given was guesswork, arrived at largely by trial and error. Accuracy was not too important in the very early days because exposures often lasted several minutes. But as increasingly standardized photographic plates and film became more sensitive, exposures shortened and a more scientific method was required. The first exposure meters appeared in the 1880s. Photographers used them to time how long it took a small piece of photographic paper to darken when exposed to light. From this, they then calculated what shutter speed to use on the camera and what aperture to set on the lens.

Q Which is better quality – digital or film?

A Both are now comparable in quality. The real answer depends on the resolution of the digital image and the physical size of the negative or transparency. A high-resolution digital image taken with a 6-megapixel camera should produce as good a print as a 35-mm negative.

Record-Breakers

OLDEST CAMERA
In 1816 Joseph Niépce devised his first ‘discovery’ camera by adapting an existing camera obscura. He used it in his attempts to capture images on paper coated with light-sensitive silver chloride. Unfortunately, the images were very faint and they did not last. It was several more years before he found a way of making them permanent.

OLDEST SURVIVING PHOTOGRAPH
The earliest known photograph that still survives today was taken by Joseph Niépce in 1826 or 1827 (see p. 8). Lost for decades, the ‘heliograph,’ as Niépce called it, was rediscovered by photo historian Helmut Gemsheim in 1952.

MOST EXPENSIVE PHOTOGRAPH
In January 2001, at Christie’s in London, a unique camera fetched an auction price of £146,750 ($215,722). It was the prototype for a complete photographic system, called Phantom, designed in 1946 by the eccentric inventor, photographer, and English Member of Parliament Noel Pemberton Billing. The camera itself could be used not only to take pictures but also as a projector or enlarger. It came with an integrated kit that included developing tanks, units for storing film, paper, and batteries, and a contact printer. The camera never actually went into production.

LARGEST CAMERA
In 2003, the telescope on top of Hawaii’s Mauna Kea was equipped with ‘Megacam,’ a French-built, 340-megapixel digital camera. The camera’s field of view takes in four times as much sky as any other-camera in the world. Its image sensor is capable of producing an image of more than one gigabyte in size.
It is more than 165 years since Louis Daguerre and Henry Fox Talbot announced their rival photographic processes. During that time, photography has come a very long way – in part due to the ingenuity and perseverance of its many pioneers. However, in just the past 10 years or so, the introduction of digital cameras and digital image processing has brought about a period of extraordinary change in the world of photography.

1500–1700
Camera obsuras were equipped with simple lenses to focus images more sharply and make them brighter. From this time on, they were increasingly used by artists to help make accurate drawings.

1727
Johann Schulze, a Swiss professor of anatomy, accidentally discovered that silver compounds were photosensitive – that is, they changed color when exposed to light.

1759
Thomas Wedgwood, son of the British potter Josiah, experimented with silhouette ‘sun prints’ on light-sensitive leather coated with silver nitrate, but was unable to make the images permanent.

1826
In France, Joseph Niépce produced the world’s first permanent camera image on a pewter plate coated with light-sensitive bitumen of Judea. It hardened where light fell on it. Any still soft after the exposure was washed off with lavender oil, leaving a permanent, recognizable image.

1839
Louis Daguerre’s daguerreotype process was publicly announced. For the first time, there was a practical way of capturing, developing and fixing permanent photographic images, and a popular craze for studio portraiture took off.

1851
Frederick Scott Archer invented the collodion process – a way of producing photosensitive glass plates that needed shorter exposure times and resulted in better images. Although still complex and cumbersome, cameras were now freed from the studio, and the first travel, documentary, and war photographs began to appear.

1861
James Clerk-Maxwell, a Scottish physicist, demonstrated the first color image, produced using red, green, and blue filters.

1871
The dry plate was invented and began to replace collodion wet plates. Slowly, photography was becoming easier and more accessible.

1877–78
Eadweard Muybridge’s stop-motion photo sequences showed for the first time exactly how a horse’s legs move at full gallop.

1880
The first halftone photograph was printed in a daily newspaper, the New York Graphic.

1888
George Eastman launched the first Kodak camera, and a mail-order processing and printing service.

1890
The first Kodak Brownie camera, loaded with flexible roll film, went on sale in the U.S. – at a widely affordable price of just $1.

1906
The first panchromatic film and plates went on sale. They were sensitive to blue, green, and red light – which improved the detail and range of tones in black-and-white photographs.

1907
The Lumière brothers in France introduced Autochrome plates – the first commercially available form of color photography.

1913
The Speed Graphic Press camera was launched in the U.S. It went on to become the standard camera for press photographers for the next 40 years.
1921
Man Ray and Moholy-Nagy produced photograms, images formed by placing objects on photographic paper and then exposing it to light.

1924
The German company Leitz introduced the Leica. It was the world’s first successful 35-mm camera.

1932
Group f64 was formed by Ansel Adams, Edward Weston, and other photographers in the U.S. It promoted realistic photography as opposed to the soft-focus pictorial style that was popular at the time.

1936
Kodachrome 35-mm color transparency film was introduced in the U.S. It was a “spinoff” from color film designed for movie cameras.

1942
Agfa and Kodacolor color-negative film was introduced, allowing low-cost color prints for the first time.

1947
The world’s best-known photojournalistic picture agency, Magnum, was formed by Henri Cartier-Bresson, Robert Capa, David Seymour, and other photographers.

1947
Edwin Land introduced the first Polaroid camera, producing instant peel-apart black-and-white pictures.

1949
The Contax S, made by the East German company Zeiss, was the first 35-mm SLR camera with a pentaprism viewfinder. It meant that the image the photographer saw was no longer reversed.

1959
The Nikon F 35-mm SLR marked the emergence of Japanese companies as major players in the photographic industry.

1963
Kodak launched the Instamatic. It used a new film format – the allegedly foolproof 126 ‘drop-in’ cartridge.

1966
Antonioni’s film Blow Up reflected the celebrity status of 1960s professional photographers.

1972
Kodak’s compact 110 format film was designed for amateur pocket cameras.

1972
Polaroid launched the SX-70, a newly designed camera that took instant color photos on single sheets that no longer need peeling apart.

1976
The Canon AE-1 35-mm camera was the first to have a built-in microprocessor. Incorporating electronics reduced the number of camera parts by 300.

1981
The first photographs of Earth taken by the Shuttle astronauts were published.

1982
Sony demonstrated its prototype Mavica ‘still video’ camera. It recorded images on floppy disks and played them back on a television set. ‘Mavica’ was a contraction of MAgnetic VIdeo CAmera.

1983
The Kodak disc camera was launched. The format was not a success, and it was dropped in 1987.

1984
At the Los Angeles Olympics, Canon used a prototype color electronic still camera to take pictures and transmit them back to Japan over phone lines.

1990
The first version of Adobe Photoshop was launched for the Apple Macintosh. It has since become the standard software application for digital image manipulation.

1990
The first photographs taken by the Hubble Space Telescope were released.

1991
Kodak released the DCS-100 SLR digital camera. It was based on a Nikon body and lens, had an external disk drive and monitor, weighed 55 lb (25 kg), was carried in a small suitcase, and cost $30,000.

1992
Kodak launched PhotoCD, the first standard format for storing digital photographs on CD-ROM.

1996
Advanced Photo System (APS) was launched. Using filmstrips 24 mm wide instead of 35 mm, it was the first major new film format for 13 years.

1996
The first consumer digital cameras became widely available. Most were capable of taking pictures at only 640 x 480 pixels.

2000
Sharp released the first cell phone with a built-in digital camera.

2002
For the first time, annual sales of digital cameras overtook those of film cameras.

2003
Camera phones overtook the sales of digital cameras and camcorders combined.
One of the best ways to learn about photography is to develop the habit of looking carefully at every picture you see. Try to think what the photographer had in mind when he or she took it. What does it show? How has it been framed? What type of camera might have been used? What kind of lens? What is in and out of focus? Is it lit naturally or with flash? Have any special effects – digital or otherwise – been used? There are plenty of places to find photographs. Newspapers, magazines, and books are an obvious source, along with the Internet. And most countries have museums and galleries that regularly display the work of great photographers.

MUSÉE FRANÇAIS DE LA PHOTOGRAPHIE
This museum of photography is situated just south of Paris and was founded in 1960. It has a collection of about 35,000 items of photographic equipment that cover the entire history of photography – camera obscuras, prototype cameras, magic lanterns and projectors, 19th-century studio apparatus, and so on. It also has an estimated 1 million photographs – including many rare early daguerreotypes.

USEFUL WEBSITES
- Online exhibitions from Great Britain's National Museum of Photography, Film & Television: www.nmpft.org.uk
- Plus online exhibitions of items from the collection: www.geh.org
- A virtual museum of photography that exists only online: www.photographymuseum.com
- One of the largest photographic community sites: www.photo.net
- National Geographic magazine’s photography site: www.nationalgeographic.com/photography
- Two sites devoted to the life and work of Joseph Niépce. One is based on a museum and research center at the house in which lived, in St-Loup-de-Varennes, France. Lots of information about early photographic processes: http://www.niepce.com
- The other is the website of the museum in Chalon-sur-Saône, France (see opposite): www.museeniépce.com
- Good source of information about digital cameras and digital imaging: www.dpreview.com
- Excellent one-man site on the history of photography to 1920: www.reggat.com/photohistory
- Website to accompany PBS TV series American Photography: A Century of Images: www.pbs.org/ktca/americangraphy
- Helios, online exhibitions from the Smithsonian American Art Museum: http://americanart.si.edu/collections/exhibits/helios

THE FOX TALBOT MUSEUM
Lacock Abbey in Wiltshire, England, was the home of Henry Fox Talbot, one of the pioneers of photography (see p. 10). In fact, the oldest surviving photographic negative is a photograph of one of the windows of the Abbey. It now houses a small museum where you can see examples of the ‘calotype’ images he invented and a selection of his original photographic equipment, including the home-made ‘mousetrap’ cameras with which he took some of the world’s very first photographs.

SEASIDE CAMERA OBSCURA
Camera obscuras such as this one, on the pier at the English seaside resort of Eastbourne, have long been popular vacation attractions (see p. 6). The Eastbourne Camera Obscura was originally built in 1901, at which time it was the largest in Great Britain. After falling into disrepair for years, it was restored and reopened in 2003. A darkened circular room contains the viewing table on which an image captured by the lenses and mirror on top of the roof is projected. The whole roof revolves on enormous ball bearings.

(c) 2011 Dorling Kindersley. All Rights Reserved.
NATIONAL MUSEUM OF PHOTOGRAPHY, FILM, AND TELEVISION

Since 1983, Great Britain’s national collection of photography and moving pictures has been located in Bradford, England. The collection of cameras, photographic equipment, and works by leading photographers was started by the Science Museum in the 1880s and dates back to the birth of photography. The museum also covers film and TV. Interactive exhibits allow visitors to operate a TV camera, appear on screen, and try their hand at animation.

Places to visit

METROPOLITAN MUSEUM OF ART, NEW YORK
www.metmuseum.org
Collection of more than 15,000 works, mostly from Europe and the U.S. Highlights include:
• Rubel Collection – examples of early British photography, including a rare album of photographs by Henry Fox Talbot
• Alfred Stieglitz Collection – pictorialist photography.

CALIFORNIA MUSEUM OF PHOTOGRAPHY
www.cmp.ucr.edu
Affiliated with University of California, Riverside. Exhibitions plus digital studio. Look for:
• Bingham Technology Collection – 10,000 cameras and viewing devices.
• World's largest collection of vintage stereographs.

MUSEUM OF CONTEMPORARY PHOTOGRAPHY, CHICAGO
www.mocp.org
Specializes in the work of American photographers.

MUSEUM OF PHOTOGRAPHIC ARTS, SAN DIEGO
www.mopa.org
Collection of both historical and contemporary photographs.

PHOTOGRAPHER'S GALLERY, LONDON, ENGLAND
www.photonet.org.uk
Exhibits work by contemporary and emerging photographers as well as established names.

NATIONAL PORTRAIT GALLERY, LONDON, ENGLAND
www.npg.org.uk
Collection of more than 160,000 photographs and exhibitions of works from the past and present.

CENTRE NATIONAL DE LA PHOTOGRAPHIE, PARIS, FRANCE
www.cnp-photographie.com
Exhibitions of contemporary photography, digital photos, and video imagery.

ENROLL IN A PHOTOGRAPHY COURSE
There is no better way of getting to grips with how photography works than by taking pictures yourself. Joining a local camera club or taking a photography course will put you in contact with photographers willing to share their experience and help you learn. Do not be afraid to experiment. Look for unusual subjects and viewpoints, and try different compositions and exposure settings. With digital cameras, there is no film to waste – if you are not happy with a picture, just delete it and take another one!

(c) 2011 Dorling Kindersley. All Rights Reserved.
Glossary

Autochrome of a couple having tea in the garden in about 1910.

APERTURE The hole that controls how much light passes through a lens. It can be widened to let in more light and narrowed to admit less. The size of the aperture is measured in f numbers or f stops. It also affects depth of field.

ASA Rating for film speed devised by the American Standards Association. Now generally replaced by ISO.

AUTOCHROME A method of producing color transparencies, invented by the Lumière brothers. Black-and-white film was coated with tiny grains of starch dyed red, green, and blue. The starch grains act as color filters to create the optical effect of a colored image.

BITMAP An image made up of a pattern or ‘map’ of pixels, each of which has its own color and tone.

CALOTYPE The first negative/positive process, invented by Fox Talbot. The negatives were thin sheets of translucent paper made light-sensitive by coating them with silver iodide solution. Positive images were contact-printed from them.

CCD Charge Coupled Device – an array of sensors in a digital camera or scanner that creates a digitized image. In high-resolution devices, CMOS (Complementary Metal Oxide Semiconductor) sensors may be used.

COLLODION Nitrated cotton (gun-cotton) dissolved in a mixture of ether and alcohol, used to bind light-sensitive silver halides to so-called “wet” glass photographic plates. The process was invented by Frederick Scott Archer in 1851.

COLOR TEMPERATURE A measure of the color quality of a light source, expressed in Kelvins. Warm golden light at dusk, for example, has a lower color temperature than daylight at noon.

CONTACT PRINTING Making same-size prints by exposing printing paper to light while in direct contact with negatives.

DAGUERREOTYPE An image created on a silver-plated copper sheet coated with light-sensitive silver iodide. The process was invented by Louis Daguerre in 1839.

DEPTH OF FIELD The distance between the nearest and farthest point from the camera within which a subject is in sharp focus. Depth of field is dependent on the aperture setting and focal length of the lens. A wide aperture at a long focal length gives a shallow depth of field.

DEVELOPER The chemical used to treat exposed film or photographic paper so that invisible images recorded by the light-sensitive material become visible.

DIGITIZE To create a digital image by converting color and brightness values into binary form.

DRIFFLE The gelatin-coated photographic plates first manufactured by Richard Leach Maddox in 1878. They replaced wet collodion plates.

EMULSION A mixture of light-sensitive compounds and gelatin put on various bases to make film and printing papers.

EXPOSURE METER A device for measuring the amount of light falling on, or being reflected by, a subject. It is used to calculate the aperture and shutter speed that will give a correct exposure.

FILE FORMAT The form in which a digital image is stored and handled. Common file formats for digital photography are JPEG, TIFF, and RAW.

FILTER Transparent lens attachment that modifies light passing through it – coloring or polarizing it, for example.

FISHEYE LENS Extreme wide-angle lens, sometimes with a view of 180 degrees or more.

FIXER The chemical used to stabilize light-sensitive film or paper so that it no longer reacts to light. Fixing agent is still sometimes called “hypo” (hyposulfite of soda or sodium thiosulfate).

FLASH SYNCHRONIZATION Method of timing the maximum light output of a flash to coincide with the moment that the camera’s shutter is fully open.

F NUMBERS A system for indicating aperture. The f number is equivalent to the focal length of the lens divided by the effective diameter of the aperture. The lower the f number, the wider the aperture.

FOCAL LENGTH The focal length of a lens determines its angle of view. A wide-angle lens has a wide angle of view and is able to capture an image of much of the scene in front of it. A telephoto lens has a narrow angle of view and captures an image of only a small area but magnifies it, like a telescope. Wide-angle lenses have short focal lengths, and telephoto lenses have long focal lengths. Focal length is measured in millimeters.

FOCUS The point at which light rays passing through a lens converge to give a clear and sharply defined image of a subject.

GRAIN Tiny particles of black metallic silver, irregularly clumped together, that are formed when film is developed. They make up the image. The finer the grain, the less visible the individual particles are to the eye.

Image taken with a fisheye lens

Black-and-white contact sheet

(c) 2011 Dorling Kindersley. All Rights Reserved.
HALF-TONE A book and newspaper printing process that uses patterns of tiny dots of different sizes to reproduce the gradations in tone of a photographic image.

HOLOGRAM A three-dimensional (3-D) image that is created using laser light.

HOT SHOE The fitting on top of a camera that holds a flashgun. The hot shoe contains electrical connections that automatically synchronize the flash with the shutter.

INCIDENT LIGHT The light that falls on a subject, as opposed to the light reflected by it. Used by some exposure meters.

ISO Rating for the sensitivity or ‘speed’ of film devised by the International Standards Organization. Also used to indicate sensitivity settings on digital image sensors.

LARGE-FORMAT CAMERA General term for cameras taking pictures 5 x 4 in (12.5 x 10 cm) and larger.

LENS A transparent glass disc with at least one curved surface. Rays of light that pass through a lens are bent, causing them to converge or diverge. A camera lens is usually made up of a number of separate lenses or groups of lens elements, which can be adjusted to bring an image into sharp focus on the surface of the film or digital image sensor.

MACRO Extreme close-up photography, producing images life-size or up to a magnification of about x 10, is called macrophotography.

MONTAGE Composite picture made from a number of images.

MEGAPIXEL One million pixels.

MEMORY CARD Removable storage medium for digital images – sometimes called “digital film.”

NEGATIVE A negative is produced by developing exposed film. It carries a transparent image of the scene that has been photographed but one in which tones and colors are reversed: dark areas become light, and light areas become dark. When light is shined through a negative onto photographic paper, a positive print is produced.

PENTAPRISM Five-sided glass prism added to SLR cameras to show the view through the lens upright and the right way around.

PHOTOMICROGRAPHY Taking pictures through a microscope.

PINHOLE CAMERA A simple camera that uses a very small hole instead of a lens.

PIXEL Abbreviation for ‘picture element,’ the smallest unit of color and tone in a digital image. Each pixel has a value specifying its own color and tone. It displays as a single square of light on a computer monitor.

PLATE CAMERA Camera originally designed to take glass plates or large-format sheets of film.

POLARIZING FILTER Colorless filter able to absorb certain kinds of light. Used for intensifying the blue of skies and reducing reflections in water and glass.

RANGEFINDER A camera focusing system that determines the distance between camera and subject. The subject is viewed simultaneously from two positions a short distance apart, showing two images that are then matched or lined up. This adjustment is usually linked or ‘coupled’ to the focusing mechanism of the camera lens.

RED EYE Effect in which flash causes the pupils of a subject’s eyes to appear red instead of black. Caused when translucent blood in the retina at the back of the eye reflects red light into the camera.

RESOLUTION The degree of detail in a digital image. Measured by the number of pixels per inch (ppi) or dots per inch (dpi).

RGB Red, Green, Blue; the three primary colors used to produce full-color images on television screens and computer monitors. Equal proportions of red, green, and blue produce white. Mixed in varying proportions, they can produce all the colors of the spectrum.

SCANNER A device for creating digitized image files from print, negative, transparency, or even 3-D originals.

SHUTTER Mechanism for controlling the time that light is allowed to act on the film or digital image sensor in a camera.

SLR A single-lens reflex (SLR) camera allows the user to preview the image through the picture-taking lens itself. It uses a hinged mirror between the lens and the film to divert an image into the viewfinder.

SPEED Sensitivity to light.

STOP In the darkroom, the chemical ‘stop’ bath halts the development process by neutralizing the developer. F numbers are also known as f stops.

TELEPHOTO A lens with a long focal length, used for enlarging distant subjects.

TRANS Parency A positive image on transparent film. The opposite of a negative.

TLR A twin-lens reflex (TLR) camera has two lenses of identical focal length. The viewfinder lens forms an image on the focusing screen, the picture-taking lens focuses the image on the film plane.

VIEWFINDER The device through which you look when framing or composing a photograph. It sometimes features an optical mechanism (such as a split screen) that helps with manual focusing. The viewfinder often also displays information about the camera’s exposure settings.

VIGNETTING Imaging technique in which the edges of the picture are gradually faded to black or white. It can also be an optical effect caused by a lens, lens attachment, or obstruction.

WIDE-ANGLE LENS A lens with a short focal length and a wide angle of view.

ZOOM LENS A lens with a variable focal length that can be adjusted from wide-angle to telephoto settings.